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Vorwort 
 
Die Theorietage der GI Fachgruppe “Automaten und Formalen 
Sprachen” finden seit 1991 jährlich statt. Seit 2006 war bereits geplant, 
dass der 30. Theorietag in Wien stattfinden sollte. Auf Grund der 
Corona-Pandemie war es aber schließlich nicht möglich, den 
30. Theorietag wie geplant vor Ort an der TU Wien zu organisieren. 
 
In der langen Tradition der Theorietage war dies daher das erste Mal, 
dass der Theorietag nicht vor Ort, also wie geplant an der TU Wien, 
sondern nur im virtuellen Raum stattfinden konnte. Leider gab es damit 
auch nur wenige Beiträge, die gerade mal einen Tag füllen konnten. 
Umso mehr danke ich allen Kolleginnen und Kollegen aus Deutschland, 
die mit ihren Beiträgen und Präsentationen schließlich doch noch die 
Durchführung des 30. Theorietages im „virtuellen Wiener Raum“ 
ermöglicht haben. 
 
Insgesamt waren schließlich 21 Personen aus Deutschland (20) und 
Österreich (1) angemeldet. Überdies konnten am 25. September 2020 
noch kurzfristig weitere Personen im virtuellen Raum teilnehmen. 
Schließlich wurden beim Theorietag 9 Beiträge präsentiert. Außerdem 
wurde der für 2021 geplante Theorietag vorgestellt und ein Bericht aus 
der Fachgruppe gegeben.  
 
Ich hoffe dass alle, die am 25. September 2020 beim 30. Theorietag, 
wenn auch nur virtuell, dabei waren, sich gefreut haben, ihre Kolleginnen 
und Kollegen zumindest im virtuellen Raum sehen und hören zu können. 
 
 
Rudi Freund 
 
Stockerau, am 29. September 2020 
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Zusammenfassung

Einfüge-Lösch-Systeme sind bekanntermaßen Turing-mächtig. Das kann sich naturge-
mäß ändern, wenn natürliche Ressourcen dieser Systeme (und ihrer Varianten) beschränkt
werden. Wir untersuchen diese Grenzen der Beschreibungsmächtigkeit für Einfüge-Lösch-
Systeme mit verbotenen Kontextbedingungen. Eine ausführlichere Fassung dieser Arbeit
ist im Tagungsband der DCFS 2020 enthalten, der in naher Zukunft erscheinen wird.

1. Einleitung

Einfüge-Lösch-Systeme wurden ursprünglich als ein formales Modell im Bereich DNA Compu-
ting eingeführt [8]. Es handelt sich hierbei im Grunde genommen um Phrasenstrukturgramma-
tiken mit zwei (eingeschränkten) Grundoperationen, dem Einfügen bzw. Löschen von Zeichen-
ketten in der augenblicklichen Satzform, jeweils unter möglicher Betrachtung des Kontexts der
Einfüge- bzw. Löschstelle. Genauer entspricht eine (↵,�,�)ins notierte Einfügeregel der Er-
setzungsregel ↵� ! ↵��, während eine (↵,�,�)del notierte Löschregel der Ersetzungsregel
↵�� ! ↵� entspricht. Die Beschreibungskomplexität von solchen System lässt sich daher be-
schreiben durch ein Tupel der Form (n,i0, i00;m,j

0
, j

00) mit folgender Bedeutung für die Regeln
besagten Systems:

– n ist die maximale Länge einer eingefügten Zeichenkette,
– i

0 ist die maximale Länge irgendeines linken Kontexts einer Einfügeregel,
– i

00 ist die maximale Länge irgendeines rechten Kontexts einer Einfügeregel,
– m,j

0
, j

00 haben analoge Bedeutungen für Löschregeln.
Sodann betrachtet man Sprachfamilien wie ID(n,i0, i00;m,j

0
, j

00), die alle Sprachen enthalten,
die durch Einfüge-Lösch-Systeme beschrieben werden können, deren Beschreibungskomple-
xität (komponentenweise) durch (n,i0, i00;m,j

0
, j

00) beschränkt ist. Beispielsweise ist bekannt,
dasss ID(1,1,1;1,1,1) = RE gilt; viele derartige Ergebnisse findet man in der Übersicht [15].
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Gleichzeitig ist bekannt, dass mancherlei Parameterbeschränkungen zu schwach sind, um
ganz RE zu beschreiben. Das motiviert (aus mathematischer Sicht), ähnlich wie bei der klas-
sischen Theorie der Phrasenstrukturgrammatiken, Regulationsmechanismen zu betrachten, sie-
he [1]. So haben S. Ivanov und S. Verlan in [7] den ursprünglich von Gh. Păun [13] (im We-
sentlichen für die Regulierung kontextfreier Grammatiken) eingeführten Mechanismus semi-
conditional für Einfüge-Lösch-Systeme betrachtet. Als Spezialfall hiervon wiederum hat A.
Meduna in [11] verbotene Kontextbedingungen eingeführt ((generalized) forbidding context);
diese wurden auch in [2, 10, 9, 12] weiter betrachtet. Das heißt, dass man Regeln endliche
Mengen von Wörtern zuordnet, die alle keine Teilwörter sein dürfen in der aktuellen Satzform,
will man solch eine Regel anwenden. In der vorgelegten Arbeit wird dieses Konzept übertragen
auf Einfüge-Lösch-Systeme. Dies hat auch durchaus eine gewisse biologische Motivation, da es
auf der molekularen Ebene durchaus Substanzen gibt, deren Vorhandensein gewisse Reaktionen
blockiert.

Etwas formaler führt das auf Sprachfamilien, die wir mit GFID(k;n,i0, i00;m,j

0
, j

00) notie-
ren, wobei der erste Parameter den Grad des Systems angibt, d.h., die maximal zugelassene
Länge eines verbotenen Teilwortes. Aus [7] folgt, dass GFID(1;1,1,0;x,y,z) 6= RE gilt für
(x,y,z) 2 {(2,0,0),(1,1,0),(1,0,1)}. Weitere Fälle ergeben sich durch Symmetrie. Ebenso ist
bekannt, dass ID(2,0,0;2,0,0) 6= RE gilt. Es stellt sich die Frage, ob kurze verbotene Kontext-
bedingungen genügen, insbesondere für diese Parameterwerte Turingmächtigkeit zu erzielen.

2. Vorstellung der Ergebnisse

Wir konnten Turingmächtigkeit für folgende Sprachfamilien nachweisen:
– GFID(2;2,0,0;2,0,0), GFID(2;1,1,0;2,0,0), GFID(2;1,1,0;1,1,0), GFID(2;1,1,0;1,0,1), so-

wie GFID(2;2,0,0;1,1,0);
– GFID(2;1,0,1;2,0,0), GFID(2;1,0,1;1,0,1), GFID(2;1,0,1;1,1,0), GFID(2;2,0,0;1,0,1).
Die zweite Gruppe von Ergebnissen folgt aus der ersten durch Symmetriebetrachtungen,

genauer aus dem Abschluss von RE gegenüber der Spiegeloperation.
Zum Beweis der ersten Gruppe von Ergebnissen wird eine Phrasenstrukturgrammatik G in

einer Sonderform der Speziellen Geffert Normalform (SGNF) betrachtet, kurz ssSGNF. Zu-
nächst sei daran erinnert, dass I. Petre und S. Verlan die SGNF eingeführt hatten in [14]. We-
sentlich für ein erstes Verständnis für die ssSGNF ist, dass das Nichtterminalalphabet N von G

zerfällt in N

0 und N

00 = {A,B,C,D,E,F}. N 0 wiederum zerfällt in NS und NS0 mit S 2 NS

und S

0 2 NS0 . G besitzt löschende Regeln der Form AB ! �, CD ! � und EF ! � sowie
S

0 ! � und evtl. S ! �. Darüber hinaus gibt es nichtlöschende kontextfreie Regeln folgender
zwei Bauarten:

– X ! Y b oder X ! b

0
Y (X 2NS , Y 2N

0
, X 6= Y, b 2 T, b

0 2 {A,C,E});
– X ! Y b oder X ! b

0
Y (X,Y 2NS0

, X 6= Y, b 2 {B,D,F}, b0 2 {A,C,E}).
In Phase I der Ableitung der ssSGNF-Grammatik G begegnen wir Satzformen der Bauart

{EA,EC}⇤NST
⇤[{EA,EC}⇤NS0{BF,DF}⇤T ⇤[{EA,EC}⇤{BF,DF}⇤T ⇤

.

Die hier angewendeten Regeln haben aufgrund der Aufspaltung des Nichtterminalalphabets
einen rechts- bzw. linkslinearen Charakter. Dieser ist typisch für SGNF-Grammatiken. In Phase
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II werden die nicht-kontextfreien löschenden Regeln auf Satzformen der Bauart

{EA,EC}⇤{�,EF}{BF,DF}⇤T ⇤

angewendet. Die Nichtterminale E,F dienen zum Aufspreizen der normalen SGNF-Satzformen;
ss steht nämlich für space-separating. Der Vorteil besteht darin, dass wir leichter verbotene
Kontexte definieren können. Denn man kann zeigen, dass ableitbare Satzformen nie Teilwörter
aus {AA,BB,CC,DD,EE,FF} enthalten. Das kann man in den Simulationen ausnutzen.

Wir erklären im Folgenden nur die allererste der Simulationen, GFID(2;2,0,0;2,0,0) betref-
fend. Da Zeichenketten der Länge 2 gelöscht werden dürfen, bereitet die Simulation der lö-
schenden Regeln insgesamt keinerlei Schwierigkeiten. Die Simulation einer „rechtslinearen“
Regel p : X ! bY ist deutlich komplexer. Wir haben dafür folgende Regeln vorgeschlagen:

p1 = [(�,pp0,�)ins, Mv [ (N 0 \{X})[F]
p2 = [(�,p0X,�)del, (Mv \{p,p0})[ (N 0 \{X})]
p3 = [(�, bp00,�)ins, (Mv \{p})[N

0[F]
p4 = [(�,Y p

000
,�)ins, (Mv \{p,p00})[N

0[{p00Z | Z 2 V \{p}}[
{Zp | Z 2 V \{p00}}[F]

p5 = [(�,pvpiv,�)ins, (Mv \{p,p00,p000})[ (N 0 \{Y })[{bp00}[
{Zp | Z 2 V \{p00}}[F]

p6 = [(�,pivp000,�)del, (Mv \{p,p00,p000,piv,pv})[ (N 0 \{Y })[{Y p

000
, bp

00}[
{p000Z | Z 2 V \{p00}}[{Zp | Z 2 V \{p00}}]

p7 = [(�,p00,�)del, (Mv \{p,p00,pv})[ (N 0 \{Y })[{Y p

000}[{Zp00 | Z 2 V \{pv}}]
p8 = [(�,pvp,�)del, (Mv \{pv,p})[ (N 0 \{Y })]

Hierbei haben wir für die |P | vielen Regeln der zu simulierenden Grammatik G (Mengen
von) Markierungen eingeführt. Diese Markierungen sind in den Satzformen des simulierenden
GFID-Systems als einzelne Zeichen enthalten, um den Fortschritt der Simulation anzuzeigen.

M = {m |m 2 [1 . . . |P |]}, M

0 = {m0 |m 2 [1 . . . |P |]},
M

00 = {m00 |m 2 [1 . . . |P |]}, M

000 = {m000 |m 2 [1 . . . |P |]},
M

iv = {miv |m 2 [1 . . . |P |]}, M

v = {mv |m 2 [1 . . . |P |]},
M00 = M [M

0[M

00
, M000 = M [M

0[M

00[M

000
,

Miv = M000[M

iv
, Mv = M000[M

iv [M

v
,

Schließlich umfässt F eine Standardmenge verbotener Teilwörter:

F = {A,C,E,�}({B,D,F,�}[T )[T{A,C,E}[{ZZ | Z 2 {A,B,C,D,E,F}} .

Eine Ersetzungsregel p : X ! bY wird wie folgt simuliert.

↵X� )p1 ↵pp
0
X� )p2 ↵p� )p3 ↵bp

00
p� )p4 ↵bY p

000
p

00
p� )p5

↵bY p

v
p

iv
p

000
p

00
p� )p6 ↵bY p

v
p

00
p� )p7 ↵bY p

v
p� )p8 ↵bY �.

Entsprechend wird be „linkslinearen“ Regeln verfahren. Die beweistechnische Schwierigkeit
besteht nun darin nachzuweisen, dass keine unerwünschten Ableitungen möglich sind. So ver-
wehrt Mv als (u.a.) verbotener Kontext bei p1 die Anwendung der entsprechenden Einfügeregel
dann, wenn irgendeine Regelmarkierung in der Satzform vorhanden ist, sei es in der Grundform
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oder in irgendeiner gestrichenen Variante. Insbesondere kann also p1 nicht zweimal unmittel-
bar hintereinander ausgeführt werden. So muss man Schritt für Schritt (induktiv) argumentieren,
dass nur die intendierte Ableitung zu einem Terminalwort führen kann.

Die Notwendigkeit der Verwendung von ssSGNF (im Gegensatz zu SGNF) erschließt sich
noch nicht bei dieser Simulation, sie wird aber benötigt in anderen Fällen. Deshalb geben
wir im Folgenden noch an, wie eine löschende Regel f : AB ! � simuliert werden kann
mit den Ressourcen GFID(2;1,0,0;1,1,0); diese Simulation kann also verwendet werden für
GFID(2;1,1,0;1,1,0) und für GFID(2;2,0,0;1,1,0), sowie für GFID(2;1,1,0;1,0,1) (in sym-
metrischer Weise).

f1 = [(�,f 0,�)ins, N

0[M000[ (N 00
` N

00
r \{AB})]

f2 = [(�,f,�)ins, N

0[ (M000 \{f 0})[{f 0Z | Z 2 V \{B}}[N

00
` N

00
r ]

f3 = [(�,f 00,�)ins, N 0[ (M000 \{f,f 0})[{f 0Z | Z 2 V \{B}} [
{fZ | Z 2 V \{A}}[N

00
` N

00
r ]

f4 = [(f,A,�)del, N

0[ (M000 \{f,f 0,f 00})[{f 0Z | Z 2 V \{B}} [
{Zf 00 | Z 2 V \{B}}[N

00
` N

00
r ]

f5 = [(f 0,B,�)del, N
0[ (M000 \{f,f 0,f 00})[{fZ | Z 2 V \{f 0}}[

{Zf 00 | Z 2 V \{B}}[N

00
` N

00
r ]

f6 = [(f,f 0,�)del, N

0[ (M000 \{f,f 0,f 00})[{f 0Z | Z 2 V \{f 00}} [
{Zf 00 | Z 2 V \{f 0}}[N

00
` N

00
r ]

f7 = [(f,f 00,�)del, N
0[ (M000 \{f,f 00})[N

00
` N

00
r ]

f8 = [(�,f,�)del, {f 0,f 00}]

Beabsichtigt ist hiermit eine Simulation der folgenden Bauart:

↵AB�t)f1 ↵Af
0
B�t)f2 ↵fAf

0
B�t)f3 ↵fAf

0
Bf

00
�t)f4

↵ff

0
Bf

00
�t)f5 ↵ff

0
f

00
�t)f6 ↵ff

00
�t)f7 ↵f�t)f8 ↵f�t

Wichtig zu beobachten ist nun, dass die Löschregeln f4 bzw. f5 nicht mehrfach hinter-
einander angewendet werden können, weil hier insbesondere die Teilwörter AA und BB nicht
auftreten können. In der üblichen SGNF ist das aber sehr wohl möglich.

Als Kuriosität merken wir abschließend noch an, dass die Simulation rechts- (und auch
links-)linearer Regeln des „asymmetrischen Falles“ (AS) GFID(2;1,1,0;1,0,1) sehr viel ein-
facher gelingt als im „symmetrischen Falle“ (S) von GFID(2;1,1,0;1,1,0). Grund dafür ist,
dass die Informationsübertragung sich einfacher im asymmetrischen Fall gestaltet., d.h., wenn
Einfügen und Löschen aus unterschiedlichen Richtungen seine Kontextinformationen erhält.

AS:

p1 = [(X,p,�)ins,M00[ (N 0 \{X})[F]
p2 = [(�,X,p)del,(M00 \{p})[ (N 0 \{X})]
p3 = [(p,Y,�)ins,(M00 \{p})[N

0]
p4 = [(p,p0,�)ins,(M00 \{p})[ (N 0 \{Y })[ ({pZ | Z 2 V \{Y }})]
p5 = [(p0, b,�)ins,(M00 \{p,p0})[ (N 0 \{Y })[ ({p0Z | Z 2 V \{Y }})]
p6 = [(�,p,p0)del,{p0Y }]
p7 = [(�,p0,�)del,{p}]

Die Simulation von p : X ! bY läuft wie folgt ab:

↵X� )p1 ↵Xp� )p2 ↵p� )p3 ↵pY � )p4 ↵pp
0
Y � )p5 ↵pp

0
bY � )p6 ↵p

0
bY �

)p7 ↵bY �.
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Hingegen benötigen wir mehr Simulationsregeln für S:

p1 = [(�,p,�)ins, M000[ (N 0 \{X})[F]
p2 = [(X,p

0
,�)ins, (M000 \{p})[ (N 0 \{X})]

p3 = [(p,X,�)del, (M000 \{p,p0})[ (N 0 \{X})[ ({X� | � 2 V \{p0}}]
p4 = [(p0,p00,�)ins, (M000 \{p,p0})[N

0[ ({pZ | Z 2 V \{p0}})]
p5 = [(p00,p000,�)ins, (M000 \{p,p0,p00})[N

0[ ({p0Z | Z 2 V \{p00}})]
p6 = [(�,p,�)del, (M000 \{p,p0,p00,p000})[N

0[{p0Z | Z 2 V \{p00}}]
p7 = [(p0, b,�)ins, {p0Z | Z 2 V \{p00}}[{p00Z | Z 2 V \{p000}}[N

0[{p}]
p8 = [(p00,Y,�)ins, {p0Z | Z 2 V \{b}}[{p00Z | Z 2 V \{p000}}[N

0[{p}]
p9 = [(Y,p000,�)del, {p,p0p00,p00p000}[ (N 0 \{Y })]

p10 = [(b,p00,�)del, {p,p000,p0p00}[ (N 0 \{Y })]
p11 = [(�,p0,�)del, {p,p00,p000}]

Die Simulation von p : X ! bY sollte hierbei folgendermaßen ablaufen:

↵X� )p1 ↵pX� )p2 ↵pXp

0
� )p3 ↵pp

0
� )p4 ↵pp

0
p

00
� )p5 ↵pp

0
p

00
p

000
�

)p6 ↵p
0
p

00
p

000
� )p7 ↵p

0
bp

00
p

000
� )p8 ↵p

0
bp

00
Y p

000
� )p9 ↵p

0
bp

00
Y �

)p10 ↵p
0
bY � )p11 ↵bY �.

3. Was noch zu tun (und offen) bleibt

– Unsere bisherigen Simulationen benötigen alle Regeln vom Grad 2. Gibt es RE-Ergebnisse
für Grammatiken mit Regeln vom Grad 1? Oder helfen umgekehrt Regeln vom Grad 3?

– Insbesondere ist unbekannt, ob GFID(1;2,0,0;2,0,0) turingmächtig ist.
– Unsere Simulationen benötigen große Mengen von verbotenen Teilwörtern. Kann man

die Mächtigkeit dieser Mengen beschränken, ohne die RE-Mächtigkeit zu verlieren?
– Tests auf Teilwörter der Länge 2 scheinen besonders notwendig zu sein. Man könnte auch

deren Anzahl als Beschreibungskomplexitätsmaß studieren.
– Die ssSGNF scheint hilfreich zu sein bei Systemen mit einseitigen Löschungen, da sie

Mehrfachlöschungen vermeiden hilft. Daher schlagen wir vor, diese Normalform auch in
anderen derartigen Simulationen zu verwenden. Bisherige Ergebnisse in Kombination mit
anderen Regulationsmechanismen (die natürliche Kandidaten für eine solche Anwendung
darstellen) finden sich in [3, 4, 5, 6] und der dort zitierten Literatur.

– Alle Konstruktionen, die (ss)SGNF verwenden, zeichnen sich dadurch aus, dass sie sehr
viele (beliebig viele) Nichtterminale verwenden. In dieser Arbeit kommt noch hinzu, dass
die Regeln (insbesondere die kontextfreien Regeln) über Markierungssymbole in die An-
zahl der Nichtterminale der Systeme einfließen. Daher wäre die Nichtterminalkomplexität
(zusätzlich zu den anderen Parametern) ein weiteres interessantes Beschreibungskomple-
xitätsmaß, bislang ohne irgendwelche Ergebnisse.
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Abstract

Catalytic P systems are among the first variants of membrane systems ever considered in
this area. This variant of systems also features some prominent computational complexity
questions, and in particular the problem of using only one catalyst: is one catalyst enough
to allow for generating all recursively enumerable sets of multisets? Several additional
ingredients have been shown to be sufficient for obtaining even computational completeness
with only one catalyst. In this paper we show that one catalyst is sufficient for obtaining
computational completeness if either catalytic rules have weak priority over non-catalytic
rules or else instead of the standard maximal parallel derivation mode we use the derivation
mode maxobjects, i.e., we only take those multisets of rules which affect the maximal
number of objects in the underlying configuration.

1. Introduction
Membrane systems were introduced in [8] as a multiset-rewriting model of computing inspired
by the structure and the functioning of the living cell. During two decades now membrane
computing has attracted the interest of many researchers, and its development is documented in
two textbooks, see [9] and [10]. For actual information see the P systems webpage [12] and the
issues of the Bulletin of the International Membrane Computing Society and of the Journal of
Membrane Computing.

One basic feature of P systems already presented in [8] is the maximally parallel derivation
mode, i.e., using non-extendable multisets of rules in every derivation step. The result of a
computation can be extracted when the system halts, i.e., when no rule is applicable any more.
Catalysts are special symbols which allow only one object to evolve in its context (in contrast to
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promoters) and in their basic variant never evolve themselves, i.e., a catalytic rule is of the form
ca ! cv, where c is a catalyst, a is a single object and v is a multiset of objects. In contrast,
non-catalytic rules in catalytic P systems are non-cooperative rules of the form a! v.

From the beginning, the question how many catalysts are needed for obtaining computa-
tional completeness has been one of the most intriguing challenges regarding (catalytic) P sys-
tems. In [3] it has already been shown that two catalysts are enough for generating any recur-
sively enumerable set of multisets, without any additional ingredients like a priority relation on
the rules as used in the original definition. As already known from the beginning, without cata-
lysts only regular (semi-linear) sets can be generated when using the standard halting mode, i.e.,
a result is extracted when the system halts with no rule being applicable any more. As shown,
for example, in [5], using various additional ingredients, i.e., additional control mechanisms,
one catalyst can be sufficient: in P systems with label selection, only rules from one set of a
finite number of sets of rules in each computation step are used; in time-varying P systems, the
available sets of rules change periodically with time. On the other hand, for catalytic P systems
with only one catalyst a lower bound has been established in [6]: P systems with one catalyst
can simulate partially blind register machines, i.e., they can generate more than just semi-linear
sets.

In [1], we returned to the idea of using a priority relation on the rules, but take only a very
weak form of such a priority relation: we only required that overall in the system catalytic rules
have weak priority over non-catalytic rules. This means that the catalyst c must not stay idle if
the current configuration contains an object a with which it may cooperate in a rule ca ! cv;
all remaining objects evolve in the maximally parallel way with non-cooperative rules. On the
other hand, if the current configuration does not contain an object a with which the catalyst
c may cooperate in a rule ca ! cv, c may stay idle and all objects evolve in the maximally
parallel way with non-cooperative rules. Even without using more than this weak priority of
catalytic rules over the non-catalytic (non-cooperative) rules, we could establish computational
completeness for catalytic P systems with only one catalyst. In this paper, we recall the result
from [1], but show a somehow much stronger result using a similar construction as in [1]:
we show computational completeness for catalytic P systems with only one catalyst using the
derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal
number of objects in the underlying configuration.

2. Definitions
For an alphabet V , by V ⇤ we denote the free monoid generated by V under the operation of
concatenation, i.e., containing all possible strings over V. The empty string is denoted by �. For
any a 2 V and any string w over A, wa denotes the number of symbols a in w.

For further notions and results in formal language theory we refer to textbooks like [2]
and [11].

2.1. Register Machines
Register machines are well-known universal devices for computing (or generating or accepting)
sets of vectors of natural numbers.



Computationally Complete Catalytic P Systems with One Catalyst 9

Definition 2.1 A register machine is a construct M = (m,B, l0, lh,P ) where
– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 2 B is the initial label, and
– lh 2 B is the final label.

The instructions of M can be of the following forms:
– p : (ADD(r) , q,s), with p 2 B \{lh}, q,s 2 B, 1  r m.

Increase the value of register r by one, and non-deterministically jump to instruction q
or s.

– p : (SUB(r) , q,s), with p 2 B \{lh}, q,s 2B, 1  r m.
If the value of register r is not zero then decrease the value of register r by one (decrement
case) and jump to instruction q, otherwise jump to instruction s (zero-test case).

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register and by
the value of the current label, which indicates the next instruction to be executed. M is called
deterministic if the ADD-instructions all are of the form p : (ADD(r) , q).

In the computing case, a computation starts with the input of a l-vector of natural numbers
in its first l registers and by executing the first instruction of P (labeled with l0); it terminates
with reaching the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last k output
registers to be empty at the end of the computation.

In the accepting case, no output registers are needed.
In the generating case, no input registers are needed.
For useful results on the computational power of register machines, we refer to [7]; for prov-

ing computational completeness results for specific variants of P systems, the most important
observation is that – in addition to the input and output registers – only two working registers
are needed.

Proposition 2.2 Register machines can compute any partial recursive relation on vectors of
natural numbers with l components as input and vectors of natural numbers with k components
as output using precisely l+ 2+ k registers, where without loss of generality, we may assume
that at the end of a successful computation the first l+2 registers are empty, and, moreover, on
the output registers, i.e., the last k registers, no SUB-instruction is ever used.

2.2. Partially Blind Register Machines
A partially blind register machine is defined as a register machine where the SUB-instructions
are of the following form:
p : (SUB(r) , q), with p 2 B \{lh}, q 2 B, 1  r m.If the value of register r is not zero then
decrease the value of register r by one and jump to instruction q, otherwise abort the compu-
tation, i.e., partially blind register machines cannot check a register for zero. A computation
works as for a register machine, yet with the restriction that a computation is aborted if one tries
to decrement a register which is zero. Moreover, computing, accepting or generating now also
requires all registers (except output registers) to be empty at the end of the computation.
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The standard model of (hierarchical) P systems can be defined as follows, for example, see
[10] for several variants:

Definition 2.3 A catalytic P system of degree m� 1 is a construct

P = (O,C,µ,w1, . . . ,wm,R1, . . . ,Rm, i0) where

– O is the alphabet of objects;
– C ⇢O is the set of catalysts,
– µ is a membrane structure of degree m with membranes labeled in a one-to-one manner with

the natural numbers 1, . . . ,m;
– w1, . . . ,wm 2O⇤ are the multisets of objects initially present in the m regions of µ;
– Ri, 1  im, are finite sets of evolution rules over O associated with the regions 1,2, . . . ,m

of µ; the evolution rules are of the forms ca! cv (catalytic rules) or a! v (non-cooperative
rules), where c is a catalyst, a is an object from O \C, and v is a string from ((O \C)⇥
{here,out, in})⇤.;

– i0 2 {0,1, . . . ,m} indicates the output region of P.

The membrane structure and the multisets in P constitute a configuration of the P sys-
tem; the initial configuration is given by the initial multisets w1, . . . ,wm. A transition between
configurations is governed by the application of the evolution rules, which is done in a given
derivation mode. In this paper we consider the maximally parallel derivation mode (max for
short), i.e., only applicable multisets of rules which cannot be extended by further rules are to
be applied to the objects in all membrane regions, as well as the derivation mode maxobjects
where in every membrane region only applicable multisets of rules which affect the maximal
number of objects are to be applied. We remark that all the multisets which can be used in the
derivation mode maxobjects can also be used in the derivation mode max.

The application of a rule u ! v in a region containing a multiset M results in subtracting
from M the multiset identified by u, and then in adding the multiset identified by v. The objects
can eventually be transported through membranes due to the targets in and out. We refer to [10]
for further details and examples.

The P system continues with applying multisets of rules according to the derivation mode
until there remain no applicable rules in any region of P. Then the system halts. We consider
the number of objects from O \C contained in the output region i0 at the moment when the
system halts as the result of the underlying computation of P. The system is called extended
since the catalytic objects in C are not counted to the result of a computation. Yet as often done
in the literature, in the following we will omit the term extended and just speak of catalytic P
systems, especially as we will restrict ourselves to P systems with only one catalyst.

The set of results of all computations possible in P using the derivation mode � is called the
set of natural numbers generated by P using � and it is denoted by N(P,�) if we only count the
total number of objects in the output membrane; if wedistinguish between the multiplicities of
different objects, we obtain aset of vectors of natural numbers denoted by Ps(P,�).

Remark 2.4 As in this paper we only consider catalytic P systems with only one catalyst,
without loss of generality, we can restrict ourselves to one-membrane catalytic P systems with
the single catalyst in the skin membrane, by taking into account the well-known flattening
process, e.g., see [4].
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Remark 2.5 Finally, we make the convention that a one-membrane catalytic P system with
the single catalyst in the skin membrane and with internal output in the skin membrane, not
taking into account the single catalyst c for the results, throughout the rest of the paper will be
described without specifying the trivial membrane structure or the output region (assumed to be
the skin membrane), i.e., we will just write P = (O,{c},w,R) where O is the set of objects, c
is the single catalyst, w is the initial input specifying the initial configuration, and R is the set
of rules.

As already mentioned earlier, the following result was shown in [6], establishing a lower
bound for the computational power of catalytic P systems with only one catalyst:

Proposition 2.6 Catalytic P systems with only one catalyst working in the derivation mode max
have at least the computational power of partially blind register machines.

Example 2.7 In [6] it was shown that the vector set S = {(n,m) | 0  n,nm 2n} (which
is not semi-linear) can be generated by some (even extended version of a) PBRM and therefore
by a P system with only one catalyst and 19 rules.

As already shown in [3], register machines with n� 2 decrementable registers can be simulated
by catalytic P systems with n catalysts and by purely catalytic P systems with n+ 1 catalysts.
Hence, both catalytic P systems and purely catalytic P systems are computationally complete.

3. Weak Priority of Catalytic Rules

In this section we now study catalytic P systems with only one catalyst in which the catalytic
rules have weak priority over the non-catalytic rules.

Example 3.1 To illustrate this weak priority of catalytic rules over the non-catalytic rules, con-
sider the rules ca! cb and a! d. If the current configuration contains k > 0 copies of a, then
the catalytic rule ca! cb must be applied to one of the copies, while the rest of objects a may
be taken up by the non-catalytic rule a! d. In particular, if k= 1, only ca! cb may be applied.

We would like to highlight the fact that weak priority of catalytic rules is much weaker than
the general weak priority, as the priority relation is only constrained by the types of rules.

Remark 3.2 The reverse weak priority, i.e., non-catalytic rules having priority over catalytic
rules, is useless, since it is equivalent to removing all catalytic rules for which there are non-
catalytic rules with the same symbol on the left-hand side of the rule. In that way we just end
up with an even restricted variant of P systems with only one catalyst.

3.1. Computational Completeness with Weak Priority

In this section, we show that catalytic P systems with one catalyst only and with weak priority
of catalytic rules are computationally complete.
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Theorem 3.3 Catalytic P systems with only one catalyst and with weak priority of catalytic
rules over the non-cooperative rules when working in the derivation mode max are computa-
tionally complete.

Proof. Given an arbitrary register machine M = (m,B,l0, lh,P ) we will construct a corre-
sponding catalytic P system with one membrane and one catalyst P = (O,{c},w,R) simulating
M . Without loss of generality, we may assume that, depending on its use as an accepting or
generating or computing device, the register machine M fulfills the condition that on the output
registers we never apply any SUB-instruction. The following proof is given for the most general
case of a register machine computing any partial recursive relation on vectors of natural num-
bers with l components as input and vectors of natural numbers with k components as output
using precisely l+2+k registers, where without loss of generality, we may assume that at the
end of a successful computation the first l+2 registers are empty, and, moreover, on the output
registers, i.e., the last k registers, no SUB-instruction is ever used. In fact, the proof works for
any number n of decrementable registers, no matter how many of them are the l input registers
and the working registers, respectively.

The main idea behind our construction is that all the symbols except the catalyst c and the
output symbols (representing the contents of the output registers) go through a cycle of length
n+ 2 where n is the number of decrementable registers of the simulated register machine.
When the symbols are traversing the r-th section of the n sections, they “know” that they are to
probably simulate a SUB-instruction on register r of the register machine M .

Observing that n=m�k, in total we get the following set of objects:

O = {ar | n+1  r m}
[ {(ar, i) | 1  r  n,1  i n+2}
[ {(p, i) | p 2 BADD,1  i n+2}
[ {(p, i) | p 2 BSUB(r),1  i r+1}

[ {(p, i)�,(p, i)0 | p 2 BSUB(r), r+2  i n+2}
[ {c,e,#}.

BADD denotes the set of labels of ADD-instructions. BSUB(r) denotes the set of labels of all
SUB-instruction p : (SUB(r), q,s) of decrementable registers r

The starting configuration of P is w= c(l0,1)↵0, where l0 is the starting label of the machine
and ↵0 is the multiset encoding the initial values of the registers.

All register symbols ar, 1  r n, representing the contents of decrementable registers, are
equipped with the rules evolving them throughout the whole cycle:

(ar, i)! (ar, i+1),1  r  n+1; (ar,n+2)! (ar,1). (1)

The construction also includes the trap rule # ! #: once the trap symbol # is introduced, it
will always keep the system busy and prevent it from halting and thus from producing a result.

For simulating ADD-instructions we also need the following rules:
Increment p : (ADD(r), q,s):
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The (variants of the) symbol p cycles together with all the other symbols, always involving
the catalyst:

c(p, i)! c(p, i+1), 1  i n+1. (2)

At the end of the cycle, the register is incremented and the non-deterministic jump to q or s
occurs: for r being a decrementable register, we take

c(p,n+2)! c(q,1)(ar,1), c(p,n+2)! c(s,1)(ar,1), (3)

whereas for r being a register never to be decremented, we take

c(p,n+2)! c(q,1)ar, c(p,n+2)! c(s,1)ar (4)

The output symbols need not undergo the cycle, in fact, they must not do that because other-
wise the computation would never stop. When the computation of the register machine halts,
only output symbols will be present, as we have assumed that at the end of a computation all
decrementable registers will be empty, i.e., no cycling symbols will be present any more in the
P system. Finally, we have to mention that if q or s is the final label lh, then we take � instead,
which means that also the P system will halt, because, as already explained above, the only
symbols left in the configuration will be output symbols, for which no rules exist.

The state symbol is not allowed to evolve without the catalyst:

(p, i)! #, 1  i n+2. (5)

Hence, in that way it is guaranteed that the catalyst cannot be used in another way, i.e., affecting
a symbol (ar, i) as explained below during the simulation of a SUB-instruction on register r.

Decrement and zero-test p : (SUB(r), q,s):
The simulation of a SUB instruction is carried out in three steps of the cycle, i.e., in steps r,

r+1, and r+2.
Before reaching simulation phase r, i.e., step r, the state symbol goes through the cycle,

necessarily involving the catalyst:

c(p, i)! c(p, i+1) > (p, i)! #, 1  i < r. (6)

Although by the definition of the P systems with priority of catalytic rules, the catalytic rule
has priority over the non-catalytic rule for (p, i), we indicate this general priority relation by the
sign < (or > for the reverse relation) in order to make the situation even clearer.

In the first step of the simulation phase r, i.e., in step r, the state symbol releases the catalyst
to try to perform the decrement and to produce a witness symbol e if register r is not empty:

(p,r)! (p,r+1), c(ar, r)! ce. (7)

Note that due to the counters identifying the position of the register symbols in the cycle,
it is guaranteed that the catalytic rule transforming (ar, r) picks the correct register symbol.
Furthermore, due to the priority of the catalytic rules, one of the the register symbols (ar, r)
must be transformed by the catalytic rule if present, instead of continuing along its cycle.

In the second step of simulation phase r, i.e., in step r+ 1, the detection of the possible
decrement happens. The outcome is stored in the state symbol:
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ce! c > e! #,

(p,r+1)! (p,r+2)� < c(p,r+1)! c(p,r+2)0.
(8)

Observe that in this case of register r being empty, both rules (p,r+ 1)! (p,r+ 2)� and
c(p,r+1)! c(p,r+2)0 would be applicable, but due to the priority of the catalytic rules, the
second rule must be preferred, thus producing (p,r+2)0. Therefore, the superscript of the state
symbol correctly reflects the outcome of the decrement: it is � if the decrement succeeded, and
0 if it did not.

After the simulation of the decrement, the state symbols evolve to the end of the cycle and
produce the corresponding next state symbols:

c(p, i)� ! c(p, i+1)�, r+2  i n+1, c(p,n+2)� ! c(q,1),

c(p, i)0 ! c(p, i+1)0, r+2  i n+1, c(p,n+2)0 ! c(s,1),

(p, i)� ! #, (p, i)0 ! #, r+2  i n+2.

(9)

The additional two steps n+ 1 and n+ 2 are needed to correctly finish the decrement and
zero test cases even for r = n.

Finally, we again mention that if q or s is the final label lh, then we take � instead, which
means that not only the register machine but also the P system halts, because, as already ex-
plained above, the only symbols left in the configuration will be output symbols, for which no
rules exist. 2

In case we have enough decrementable registers, the additional steps can be reduced:

Theorem 3.4 For any register machine with at least three decrementable registers we can con-
struct a catalytic P system with only one catalyst and with weak priority of catalytic rules over
the non-cooperative rules and working in the derivation mode max which can simulate every
step of the register machine in n steps where n is the number of decrementable registers.

Theorem 3.5 For any register machine with at least two decrementable registers we can con-
struct a catalytic P system with only one catalyst and with weak priority of catalytic rules over
the non-cooperative rules and working in the derivation mode max which can simulate every
step of the register machine in n+1 steps where n is the number of decrementable registers.

As the number of decrementable registers in generating register machines needed for gen-
erating any recursively enumerable set of (vectors of) natural numbers is only two, from Theo-
rem 3.4 we obtain the following result:

Corollary 3.6 For any generating register machine with two decrementable registers we can
construct a catalytic P system with only one catalyst and with weak priority of catalytic rules
over the non-cooperative rules which can simulate every step of the register machine in 3 steps,
and therefore such catalytic P systems with only one catalyst and with weak priority of catalytic
rules over the non-cooperative rules can generate any recursively enumerable set of (vectors
of) natural numbers.
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4. Catalytic P Systems With Only One Catalyst Working in
the Derivation Mode maxobjects

In this section we now study catalytic P systems with only one catalyst which work in the
derivation mode maxobjects and show that computational completeness can be obtained with
only one catalyst and no further ingredients.

Theorem 4.1 For any register machine with at least three decrementable registers we can con-
struct a catalytic P system with only one catalyst and working in the derivation mode maxob-
jects which can simulate every step of the register machine in n steps where n is the number of
decrementable registers.

Proof. We can take over the proof of Theorem 3.4. The priority of catalytic rules then
is somehow regained by the fact that a catalytic rule ca! cv affects two objects, whereas the
corresponding non-catalytic rule a ! v only affects one object. Going carefully through the
proof we even realize that as the only rule introducing the trap symbol now the single rule
e! # remains. 2

5. Conclusion

The results obtained in Section 4 are optimal with respect to the number of catalysts for catalytic
P systems working in the derivation mode maxobjects, as the results for P systems only using
non-cooperative rules are the same for both the derivation mode maxobjects and the derivation
mode max; for example, in the generating case, P systems only using non-cooperative rules can
only generate semi-linear sets.

Although in this paper we have come tantalizingly close to showing computational com-
pleteness of catalytic P system with only one catalyst, we still believe that the answer to the
classic problem whether catalytic P system with only one catalyst working in the derivation
mode max are computationally complete still remains one of the biggest challenges in the the-
ory of P systems.
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Abstract

P systems are a model of compartmentalized multiset rewriting inspired by the structure
and functioning of the living cell. In this paper, we focus on a variant in P systems in which
membranes have limited capacity, i.e., the number of objects they may hold is statically
bounded. This feature corresponds to an important physical property of cellular compart-
ments. We propose several possible semantics of limited capacity and show that one of
them allows real-time simulations of partially blind register machines, while the other one
allows for obtaining computational completeness.

1. Introduction

Membrane systems were introduced in [9] as a multiset-rewriting model of computing inspired
by the structure and the functioning of the living cell. Among the basic features of the original
model are the hierarchical arrangement of the membranes and the parallel evolution of the ob-
jects contained in the membrane compartments. Usually a result is obtained if the computation
halts, i.e., if no rule is applicable any more.

In this paper we consider an additional feature also inspired by biology, namely the limited
capacity of cells to include objects – in total or of a specific kind. When the number of cells is
not bounded as in P systems with active membranes, this biological feature of limited capacity
can be kept for all cells below a given fixed bound. On the other hand, in the standard hierar-
chical model with a static number of cells, or, even if we allowed membrane dissolution, with
a fixed upper bound for the number of cells, we can only limit the number of specific objects
and have to allow an unbounded number of other objects when aiming at non-trivial theoretical
results.

When the number of cells is not bounded because of using membrane creation and/or mem-
brane division (together with membrane dissolution), the number of objects in one cell/membrane
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can even be restricted to one, still allowing for obtaining computational completeness, thereby
counting the number of membranes/cells instead of the number of objects in an output mem-
brane/cell; for example, see [1, 4, 2].

In this paper we investigate P systems limiting the number of (specific) objects to be con-
tained in a membrane region and two different semantics of how to treat the situation when the
application of a (multiset of) rule(s) would violate this limiting condition, both of them block-
ing or aborting computations which try to apply a multiset of rules leading to a violation of the
limited capacity conditions. For the first variant we show that it allows for real-time simulations
of partially blind register machines, while the other variant allows for obtaining computational
completeness.

The development of the fascinating area of membrane computing during the last two decades
is documented in two textbooks, see [10] and [11]. For actual information see the P systems
webpage [13] and the issues of the Bulletin of the International Membrane Computing Society
and of the Journal of Membrane Computing.

2. Definitions

For an alphabet V , by V ⇤ we denote the free monoid generated by V under the operation of
concatenation, i.e., containing all possible strings over V. The empty string is denoted by �. For
any a 2 V and any string w over A, wa denotes the number of symbols a in w.

For further notions and results in formal language theory we refer to textbooks like [5]
and [12].

2.1. Register Machines

Register machines are well-known universal devices for computing (or generating or accepting)
sets of vectors of natural numbers.

Definition 2.1 A register machine is a construct M = (m,B, l0, lh,P ) where
– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 2 B is the initial label, and
– lh 2 B is the final label.

The instructions of M can be of the following forms:
– p : (ADD(r) , q,s), with p 2 B \{lh}, q,s 2 B, 1  r m.

Increase the value of register r by one, and non-deterministically jump to instruction q
or s.

– p : (SUB(r) , q,s), with p 2 B \{lh}, q,s 2B, 1  r m.
If the value of register r is not zero then decrease the value of register r by one (decrement
case) and jump to instruction q, otherwise jump to instruction s (zero-test case).

– lh : HALT .
Stop the execution of the register machine.
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A configuration of a register machine is described by the contents of each register and by
the value of the current label, which indicates the next instruction to be executed. M is called
deterministic if the ADD-instructions all are of the form p : (ADD(r) , q).

In the computing case, a computation starts with the input of a l-vector of natural numbers
in its first l registers and by executing the first instruction of P (labeled with l0); it terminates
with reaching the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last k output
registers to be empty at the end of the computation.

In the accepting case, no output registers are needed.
In the generating case, no input registers are needed.
For useful results on the computational power of register machines, we refer to [8]; for prov-

ing computational completeness results for specific variants of P systems, the most important
observation is that – in addition to the input and output registers – only two working registers
are needed.

Proposition 2.2 Register machines can compute any partial recursive relation on vectors of
natural numbers with l components as input and vectors of natural numbers with k components
as output using precisely l+ 2+ k registers, where without loss of generality, we may assume
that at the end of a successful computation the first l+2 registers are empty, and, moreover, on
the output registers, i.e., the last k registers, no SUB-instruction is ever used.

2.2. Partially Blind Register Machines

A partially blind register machine is defined as a register machine where the SUB-instructions
are of the following form:
p : (SUB(r) , q), with p 2 B \{lh}, q 2 B, 1  r m.If the value of register r is not zero then
decrease the value of register r by one and jump to instruction q, otherwise abort the compu-
tation, i.e., partially blind register machines cannot check a register for zero. A computation
works as for a register machine, yet with the restriction that a computation is aborted if one tries
to decrement a register which is zero. Moreover, computing, accepting or generating now also
requires all registers (except output registers) to be empty at the end of the computation.

2.3. P Systems

The standard model of (hierarchical) P systems can be defined as follows, for example, see [11]
for several variants:

Definition 2.3 A catalytic P system of degree m� 1 is a construct

P = (O,C,µ,w1, . . . ,wm,R1, . . . ,Rm, i0) where

– O is the alphabet of objects;
– C ⇢O is the set of catalysts,
– µ is a membrane structure of degree m with membranes labeled in a one-to-one manner with

the natural numbers 1, . . . ,m;
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– w1, . . . ,wm 2O⇤ are the multisets of objects initially present in the m regions of µ;
– Ri, 1  im, are finite sets of evolution rules over O associated with the regions 1,2, . . . ,m

of µ; the evolution rules are of the forms ca! cv (catalytic rules) or a! v (non-cooperative
rules), where c is a catalyst, a is an object from O \C, and v is a string from ((O \C)⇥
{here,out, in})⇤.;

– i0 2 {0,1, . . . ,m} indicates the output region of P.

The membrane structure and the multisets in P constitute a configuration of the P system;
the initial configuration is given by the initial multisets w1, . . . ,wm. A transition between con-
figurations is governed by the application of the evolution rules, which is done in the maximally
parallel way, i.e., only applicable multisets of rules which cannot be extended by further rules
are to be applied to the objects in all membrane regions.

The application of a rule u ! v in a region containing a multiset M results in subtracting
from M the multiset identified by u, and then in adding the multiset identified by v. The objects
can eventually be transported through membranes due to the targets in and out.

The P system continues with applying multisets of rules in the maximally parallel way until
there remain no applicable rules in any region of P. Then the system halts. We consider the
number of objects from O contained in the output region i0 at the moment when the system
halts as the result of the underlying computation of P. The set of results of all computations
possible in P is called the set of natural numbers generated by P and it is denoted by N(P) if
we only count the total number of objects in the output membrane; if we distinguish between
the multiplicities of different objects, we obtain a set of vectors of natural numbers denoted by
Ps(P). We refer to [11] for further details and examples.

Since the beginning, the question how many catalysts are needed in catalytic and purely cat-
alytic P systems for obtaining computational completeness has been a challenging theoretical
question. The following result was shown in [7], establishing a lower bound for the computa-
tional power of catalytic P systems with only one catalyst:

Proposition 2.4 Catalytic P systems with only one catalyst have at least the computational
power of partially blind register machines.

Example 2.5 In [7] it was shown that the vector set S = {(n,m) | 0  n,nm 2n} (which
is not semi-linear) can be generated by some (even extended version of a) PBRM and therefore
by a P system with only one catalyst and 19 rules.

As already shown in [6], register machines with n� 2 decrementable registers can be sim-
ulated by catalytic P systems with n catalysts and by purely catalytic P systems with n+ 1
catalysts. Hence, both catalytic P systems and purely catalytic P systems are computationally
complete.

3. Limited Capacity

In most of the variants of P systems considered in the literature the number of objects in a
membrane region is not limited. In [3], we proposed variants in which the number of objects
a membrane may contain is bounded, with the bound already being given in the definition of
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the system, either limiting the total number of objects in a cell or only limiting the number of
specific objects in a cell, respectively. The following definitions are given as in [3].

Definition 3.1 A P system with per-membrane limited capacity is the following construct:

P = (O,µ,w1, . . . ,wn,k1, . . . ,kn,R1, . . .Rn, i0),

where ki 2 N[ {1} is the total capacity of membrane i, 1  i  n, meaning that, for |vi|
denoting the contents of membrane i in the current configuration, the condition |vi|  ki must
always be enforced, unless ki =1. The other components of the tuple are as in Subsection 2.3.

Definition 3.2 A P system with per-symbol limited capacity is the following construct:

P = (O,µ,w1, . . . ,wn,K1, . . . ,Kn,R1, . . .Rn, i0),

where Ki : O ! N[ {1} are functions defining the per-symbol capacity of membrane i. For
w denoting the union of the contents of all memranes in the system, the condition wa K(a)
therefore must be enforced at all times, for any a 2O, unless K(a) =1.

Remark 3.3 We immediately remark that the flattening technique which is folklore in the mem-
brane computing community can be applied in the case of P systems with per-symbol limited
capacity. Without loss of generality, we therefore in Section 4 will only consider 1-membrane
systems, which can be written in a simplified version as follows with omitting the trivial mem-
brane structure and taking the skin membrane 1 as the output membrane:

P = (O,w,K,R) and P = (O,C,w,K,R) for catalytic P systems.

3.1. Semantics of Limited Capacity

What should happen if a membrane is about to exceed its capacity (total or per-symbol)? Multi-
ple kinds of behaviors may be considered, see [3] for several variants. We here only consider the
blocking behavior: prohibit the application of (multisets of) rules which would produce more
objects. Attempting to apply such rules blocks the system, and yields no result.

Although in this paper we want to focus on the blocking behavior, there are still at least
two possible semantics for the blocking behavior itself under the maximally parallel derivation
mode:

Semantics 1: Take all the applicable multisets of rules in the maximally parallel derivation
mode, but discard all those multisets which would violate the constraints.

Semantics 2: Take all the applicable multisets of rules in the asynchronous derivation mode,
discard the multisets which would violate the constraints, and then pick the non-extendable,
i.e., maximal multisets out of these applicable multisets of rules.

To illustrate the difference between these two semantics, consider the following 1-membrane
system with limited capacity:
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a! c
b! c

ab

It can formally be written as Pab = ({a,b},ab,Kab,{a ! c,b ! c}) where Kab(c) = 1 and
Kab(a) =Kab(b) =1. In the case of Semantics 1, no multisets of rules not violating the con-
straint of limiting the capacity of symbols c in the resulting configuration would be applicable,
and the P system will block /abort this computation. On the other hand, under Semantics 2, Pab

would be allowed to apply either a! c or b! c, but not both.

4. Computational Power

In this section we investigate the computational power of P systems with limited per-symbol
capacity: when operating with Semantics 1, they at least can simulate partially blind register
machines in real time; when operating with Semantics 2, they can simulate purely catalytic P
systems (and thus register machines) and therefore are computationally complete.

4.1. Semantics 1 Allows for Simulating a PBRM in Real Time

In comparison with the result stated in [7] showing that P systems with one catalyst can simulate
partially blind register machines (without any further ingredients), we here obtain a real-time
simulation, see [3], whereas the result there needs a cycle of n+3 for each step of the register
machine, with n being the number of decrementable registers.

Theorem 4.1 Catalytic P systems with one catalyst and per-symbol limited capacity operating
with Semantics 1 can simulate partially blind register machines (PBRM) in real time, plus three
additional cleanup steps at the end of the computation.

4.2. Semantics 2 Allows for Computational Completeness

Theorem 4.2 P systems with per-symbol limited capacity operating with Semantics 2 without
catalysts can simulate purely catalytic P systems.

Proof. Let P = (O,C,w,K,R) be an arbitrary purely catalytic P system. We now construct
a P system P0 = (O,w,K,R0) with per-symbol limited capacity, operating with Semantics 2,
without catalysts:

P0 = (O,w,K,R0),
w0 = l0↵0,
K = {(c,1) | c 2 C}[{(x,1) | x 2O \C},
R0 = {a! cu | ca! cu 2R,c 2 C}

[ {c! � | c 2 C}.

↵0 is the multiset encoding the initial values of the registers.
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In the construction of P0 the symbols c 2 C now are not catalysts any more as in P, but
guarantee the same effect by their number being limited by 1.

2

Corollary 4.3 P systems with per-symbol limited capacity operating with Semantics 2 without
catalysts can simulate catalytic P systems.

Proof. Let P = (O,C,w,K,R) be an arbitrary catalytic P system. As in the Proof of
Theorem 4.2 we construct a P system P0 = (O,w,K,R0) with per-symbol limited capacity,
operating with Semantics 2, without catalysts:

P0 = (O,w,K,R0),
w0 = l0↵0,
K = {(c,1) | c 2 C}[{(x,1) | x 2O \C},
R0 = {a! cu | ca! cu 2R,c 2 C}

[ {a! u | a! u 2R}
[ {c! � | c 2 C}.

In fact, we have just added the non-cooperative rules a! u from R to R0.
2

Since catalytic as well as purely catalytic P systems are computationally complete, for ex-
ample see [6], we immediately derive the following corollary.

Corollary 4.4 P systems with per-symbol limited capacity operating with Semantics 2 are com-
putationally complete, even without using catalysts.

5. Conclusion

In this paper, we have introduced the idea of bounding the number of symbols that may appear
in the membranes of a P system. This is a quite natural restriction to consider, given that
actual biological membranes are of limited capacity, too. We defined limited total and per-
symbol capacities, and defined two possible semantics for handling the overflow. We then
showed that Semantics 1 allows non-cooperative P systems to simulate partially blind register
machines in real time, with 3 additional cleanup steps at the end of the computation. We also
showed that non-cooperative P systems operating under Semantics 2 of limited capacity directly
simulate purely catalytic and catalytic P systems (in real time), yet without needing catalysts,
and therefore are computationally complete.

This paper only scratches the surface of the study of P systems with limited capacity. One
immediate open problem is that of computational completeness of (catalytic, purely catalytic)
P systems with limited capacity operating with Semantics 1 or else characterizing the computa-
tional power of these systems.
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Zusammenfassung

Wir geben eine vollständige Klassifikation der Berechnungskomplexität des Synchroni-
sierbarkeitsproblems für endliche Halbautomaten unter kommutativen regulären Einschrän-
kungen. Weiter zeigen wir, dass unter polyzyklischen regulären Einschränkungen das Pro-
blem der Synchronisierbarkeit stets in NP liegt.

1. Ergebnisse
Wir setzen Kenntnisse und Notationen der Automatentheorie, formaler Sprachen und der Kom-
plexitätstheorie, wie in [7] aufgeführt, voraus. Eine Sprache L ✓ S⇤ heißt kommutativ, wenn
sie unter dem Vertauschen von Buchstaben abgeschlossen ist; genauer, aus uawbv 2 L, für
u,w,v 2 S⇤ und a,b 2 S, folgt ubwav 2 L. Ein Halbautomat ist ein Tupel A= (S,S,�), wobei
S ein endliches Alphabet, S eine endliche Zustandsmenge und � : S⇥S ! S die Überführungs-
funktion bezeichnet. Letztere kann, genau wie bei endlichen Automaten [7], auf Wörter und
Teilmengen erweitert werden. Ein Halbautomat heißt synchronisierend, falls ein Wort w 2 S⇤

existiert, so dass �(s,w) = �(ŝ,w) für alle s, ŝ 2 S gilt. Das Problem der Synchronisierbar-
keit unter regulären Einschränkungen wurde in [1] eingeführt. Gegeben sei eine (fixe) reguläre
Sprache L.

Definition 1.1 ([1]) L-CONSTR-SYNC
Input: Halbautomat A= (S,Q,�).
Question: Gibt es ein synchronisierendes Wort w for A mit w 2 L?

In [4] wurde folgendes gezeigt.

Theorem 1.2 ([4]) Für kommutative reguläre Sprachen L ist L-CONSTR-SYNC entweder in P,
NP-vollständig oder PSPACE-vollständig, und jeder dieser Komplexitätsklassen wird realisiert.
Weiter ist, zu gegebenem L, die Komplexität von L-CONSTR-SYNC effektiv entscheidbar.

Eine genauere Formulierung und zahlreiche Beispiele finden sich in [4]1. Ein nicht-deterministischer
Automat A = (S,S,�, s0,F ) heißt polyzyklisch, wenn es zu jedem Zustand s 2 S ein Wort

1Eine Langfassung wird in einem Sonderband zur COCOON 2020, in der Zeitschrift Theoretical Computer
Science (TCS), erscheinen.
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Figure 1: Polyzyklische und nicht polyzyklische Automaten.

w 2 S⇤ gibt, so dass {u 2 S | s 2 �(s,u)} ✓ w⇤ gilt2. Eine Sprache L ✓ S⇤ heißt polyzyklisch,
wenn sie durch einen polyzyklischen Automaten akzeptiert wird.

Proposition 1.3 ([6]) Die polyzyklischen Sprachen können ebenso durch partielle deterministi-
sche Automaten charakterisiert werden. Weiter sind sie abgeschlossen unter Konkatenation und
Vereinigung.

In [6] konnte gezeigt werden.

Theorem 1.4 ([6]) Für polyzyklische Sprachen L ist L-CONSTR-SYNC stets in NP.

Wir verweisen auf [6] für Beispiele zu NP-vollständigen Problemen und Problemen in P.
Eine Sprache L ✓ S⇤ heißt bounded [2], sofern es Wörter w1, . . . ,wn 2 S⇤ gibt, so dass L ✓
w⇤

1 · · ·w⇤
n. Jede reguläre Sprache, welche bounded ist, ist polyzyklisch, wie mit einem einfachen

Satz von Ginsburg [3] folgt.

Corollary 1.5 Ist L✓ S⇤ bounded und regulär, so ist L-CONSTR-SYNC in NP.

2. Offene Probleme
(i) Bisher sind alle bekannten Probleme, für die L-CONSTR-SYNC NP-vollständig ist, durch

polyzyklische Sprachen gegeben3. Ob dies im Allgemeinen so ist, ist ein offenes Problem.
(ii) Gibt es für polyzyklische Einschränkungssprachen nur Probleme, die entweder in P oder

NP-vollständig sind, d.h. gilt eine Dichotomie?
(iii) Allgemein: Gilt für reguläres L, dass L-CONSTR-SYNC entweder in P, NP-vollständig

oder PSPACE-vollständig ist?

Remark 2.1 In der arXiv-Version von [4], siehe [5], wurde ein kleiner Fehler korrigiert. In
zwei Propositionen und dem Hauptsatz fehlte eine Annahme. Siehe auch den Kommentar zur
letzten arXiv-Version [5] in der arXiv-Ansicht.

2In [2] werden solche Sprachen als kommutativ bezeichnet, wir verstehen hier aber unter kommutativen Spra-
chen etwas anderes.

3Es gibt allerdings eine Vielzahl von nicht-polyzyklischen Sprachen L, für die das Problem in P ist.
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Abstract

A subsequence (also called scattered factor or subword, especially in automata and language
theory) of a word w is a word u such that there exist (possibly empty) words v0, . . . , vn, u1, . . . ,un
with u= u1 . . .un and w = v0u1v1u2 . . .unvn. Intuitively, the subsequences of a word w are ex-
actly those words obtained by deleting some of the letters of w, so, in a sense, they can be seen
as lossy-representations of the word w. Accordingly, subsequences may be a natural mathe-
matical model for situations where one has to deal with input strings with missing or erroneous
symbols sequencing, such as processing DNA data or digital signals. Due to this very simple
and intuitive definition as well as the apparently large potential for applications, there is a high
interest in understanding the fundamental properties that can be derived in connection to the
sets of subsequences of words. This is reflected in the consistent literature developed around
this topic. J. Sakarovitch and I. Simon in [9, Chapter 6] overview some of the most important
combinatorial and language theoretic properties of sets of subsequences. The theory of subse-
quences was further developed in various directions: combinatorics on words, automata theory,
formal verification, or string algorithms.

One particularly interesting notion related to subsequences was introduced by Simon in [11].
He defined the relation ⇠k (called now Simon’s congruence) as follows. Two words are ⇠k-
equivalent if they have the same set of subsequences of length at most k. In [11], as well as
in [9, Chapter 6], many fundamental properties (mainly of combinatorial nature) of ⇠k are
discussed; this line of research was continued in, e.g., [1, 2, 6–8] where the focus was on the
properties of some special classes of this equivalence. From an algorithmic point of view, a
natural decision problem and its optimisation variant stand out:

Problem 1 SIMK: Given two words s and t over an alphabet S, with |s|= n and |t|= n0, with
n� n0, and a natural number k, decide whether s⇠k t.

Problem 2 MAXSIMK: Given two words s and t over an alphabet S, with |s|= n and |t|= n0,
with n� n0, find the maximum k for which s⇠k t.
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The problems above were usually considered assuming (although not always explicitly) the
Word RAM model with words of logarithmic size. This is a standard computational model in
algorithm design: for an input of size n, the memory consists of words consisting of Q(logn)
bits. Basic operations (including arithmetic and bitwise boolean operations) on words take
constant time, and any word can be accessed in constant time. In this model, the two input
words are just sequences of integers, each integer stored in a single memory word. To be able
to compare our results to the existing literature, we assume too the standard Word RAM model.

Both problems SIMK and MAXSIMK were considered thoroughly in the literature. In par-
ticular, Hebrard [5] presents MAXSIMK as computing a similarity measure between strings and
mentions a solution of Simon [10] for MAXSIMK which runs in O(|S|nn0) (the same solution
is mentioned in [4]). He goes on and improves this (see [5]) in the case when S is a binary
alphabet: given two bitstrings s and t, one can find the maximum k for which s ⇠k t in linear
time. The problem of finding optimal algorithms for MAXSIMK, or even SIMK, for general
alphabets was left open in [5, 10] as the methods used in the latter paper for binary strings did
not seem to scale up. In [4], Garel considers MAXSIMK and presents an algorithm based on
finite automata, running in O(|S|n), which computes all distinguishing words u of minimum
length, i.e., words which are factors of only one of the words s and t from the problem’s state-
ment. Finally, in an extended abstract from 2003 [12], Simon presents another algorithm based
on finite automata solving MAXSIMK which runs in O(|S|n), and he conjectures that it can
be implemented in O(|S|+n). Unfortunately, the last claim is only vaguely and insufficiently
substantiated, and obtaining an algorithm with the claimed complexity seems to be non-trivial.
Although Simon announced that a detailed description of this algorithm will follow shortly, we
were not able to find it in the literature.

In [3], a new approach to efficiently solving SIMK was introduced. This idea was to com-
pute, for the two given words s and t and the given number k, their shortlex forms: the words
which have the same set of subsequences of length at most k as s and t, respectively, and are
also lexicographically smallest among all words with the respective property. Clearly, s ⇠k t
if and only if the shortlex forms of s and t for k coincide. The shortlex form of a word s of
length n over S was computed in O(|S|n) time, so SIMK was also solved in O(|S|n). A more
efficient implementation of the ideas introduced in [3] was presented in [1]: the shortlex form
of a word of length n over S can be computed in linear time, so SIMK can be solved in opti-
mal linear time. By binary searching for the smallest k, this gives an O(n logn) time solution
for MAXSIMK. This brings up the challenge of designing an optimal linear-time algorithm for
non-binary alphabets.

We confirm Simon’s claim from 2003 [12]. We present a complete algorithm solving
MAXSIMK in linear time on Word RAM with words of size Q(logn). This closes the prob-
lem of finding an optimal algorithm for MAXSIMK. Our approach is not based on finite au-
tomata (as the one suggested by Simon), nor on the ideas from [1, 3]. Instead, it works as
follows. Firstly, looking at a single word, we partition the respective word into k-blocks: con-
tiguous intervals of positions inside the word, such that all suffixes of the word inside the same
block have exactly the same subsequences of length at most k (i.e., they are ⇠k-equivalent).
Since the partition in (k+ 1)-blocks refines the partition in k-blocks, one can introduce the
Simon-tree associated to a word: its nodes are the k-blocks (for k from 1 to at most n), and
each node on level k has as children exactly the (k+ 1)-blocks in which it is partitioned. We
first show how to compute efficiently the Simon-tree of a word. Then, to solve MAXSIMK, we
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show that one can maintain in linear time a connection between the nodes on the same levels
of the Simon-trees associated to the two input words. More precisely, for all `, we connect
two nodes on level ` of the two trees if the suffixes starting in those blocks, in their respective
words, have exactly the same subsequences of length at most `. It follows that the value k
required in MAXSIMK is the lowest level of the trees on which the blocks containing the first
position of the respective input words are connected. Using the Simon-trees of the two words
and the connection between their nodes, we can also compute in linear time a distinguishing
word of minimal length for s and t. Achieving the desired complexities is based on a series
of combinatorial properties of the Simon-trees, as well as on a rather involved data structures
toolbox.
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A word equation is a tuple (↵,�), usually written ↵

.

= �, such that ↵ and � are words
comprised of letters from a terminal alphabet S = {a,b, . . .} and variables from a set X =
{x,y,z, . . .}. Solutions are substitutions of the variables for words in S⇤ making both sides
identical. For example, one solution to the word equation xaby

.

= ybax is given by x ! b
and y ! bab. A system of equations is a set of equations, and a solution to the system is a
substitution for the variables which is a solution to all the equations in the system.

One of the most fundamental questions concerning word equations is the satisfiability prob-
lem: determining whether or not a word equation has a solution. Makanin [19] famously
showed in 1977 that the satisfiability problem for word equations is decidable by giving a
general algorithm. Since then, several further algorithms have been presented. Most notable
among these are the algorithm given by Plandowski [22] which demonstrated that the satisfia-
bility problem is in PSPACE, the algorithm based on Lempel-Ziv encodings by Plandowksi and
Rytter [23], and the method of recompression by Jeż, which has since been shown to require
only non-deterministic linear space [14, 15]. On the other hand, it is easily seen that solving
word equations is NP-hard due to fact that the subcase when one side of the equation consists
only of terminals is exactly the pattern matching problem which is NP-complete [3, 11]. It
remains a long-standing open problem whether or not the satisfiability problem for word equa-
tions is contained in NP.

Recently, there has been elevated interest in solving more general versions of the satisfiabil-
ity problem, originating from practical applications in e.g. software verification where several
string solving tools capable of solving word equations are being developed [1, 2, 4, 5, 16] and
database theory [12, 13], where one asks whether a given (system of) word equation(s) has a
solution which satisfies some additional constraints. Prominent examples include requiring that
the substitution for a variable x belongs to some regular language L

x

(regular constraints), or
that the lengths of the substitutions of the variables satisfy a set of given linear diophantine equa-
tions. Adding regular constraints makes the problem PSPACE complete (see [9,22,24], while it
is another long standing open problem whether the satisfiability problem with length constraints
is decidable. There are also many other kinds of constraints, however many lead to undecidable
variants of the satisfiability problem [6,17]. The main difficulty in dealing with additional con-
straints is that the solution-sets to word equations are often infinite sets with complex structures.
For example, they are not parametrizable [21], and the set of lengths of solutions is generally
not definable in Presburger arithmetic [18]. Thus, a better understanding of the solution-sets
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and their structures is a key aspect of improving our ability to solve problems relating to word
equations both in theory and practice.

Quadratic word equations (QWEs) are equations in which each variable occurs at most
twice. For QWEs, a conceptually simple and easily implemented algorithm exists which pro-
duces a representation of the set of all solutions as a graph. Despite this, however, the sat-
isfiability problem for quadratic equations remains NP-hard, even for severely restricted sub-
classes [7, 10], while inclusion in NP, and whether the satisfiability problem with length con-
straints is decidable, have remained open for a long time, just as for the general case.

The algorithm solving QWEs is based on iteratively rewriting the equation(s) according to
some simple rules called Nielsen transformations. If there exists a sequence of transformations
from the original equation to the trivial equation "

.

= ", then the equation has a solution. Oth-
erwise, there is no solution. Hence the satisfiability problem becomes a reachability problem
for the underlying rewriting transformation relation, which we denote )

NT

. It is natural to
represent this relation as a directed graph G)NT in which the vertices are word equations and
the edges are the rewriting transformations. This has the advantage that the set of all solutions
to an equation E corresponds exactly to the set of walks in the graph starting at E and finishing
at the trivial equation "

.

= ". Consequently, the properties of the subgraph of G)NT containing
all vertices reachable from E (denoted G)NT

[E] ) are also informative about the set of solutions to
the equation. For example, in [21] a connection is made between the non-parameterisability of
the solution set of E and the occurrence of combinations of cycles in the graph. Since equations
with a parametrisable solution set are much easier to work with when dealing with additional
constraints, this also establishes a connection between the structure of G)NT

[E] and the potential
(un)decidability of variants of the satisfiability problem. Moreover, new insights into the struc-
ture and symmetries of these graphs are necessary for better understanding and optimising the
practical performance of the algorithm.

We consider a subclass of QWEs called regular equations (RWEs) introduced in [20]. A
word equation is regular if each variable occurs at most once on each side of the equation. Thus,
for example, xaby .

= ybax is regular while xabx .

= ybay is not. Understanding RWEs is a vital
step towards understanding the quadratic case, not only because they constitute a significant and
general subclass, but also because many non-regular quadratic equations can exhibit the same
behaviour as regular ones (consider, e.g. zz .

= xabyybax for which all solutions must satisfy
z = xaby = ybax). The satisfiability problem was shown in [7] to be NP-hard for RWEs, and
shown to be NP-complete in [8] for some restricted subclasses of RWEs including the classes
of regular-reversed and regular-ordered equations.

For RWEs E, we investigate the structure of the graphs G)NT
[E] , and as a consequence, are

able to describe some of their most important properties. In particular, we show that the di-
ameter of the full graph G)NT

[E] is polynomial, and consequently, that the satisfiability problem
for RWEs is NP-complete. This can be generalised to systems of equations satisfying a natural
extension of the regularity property.
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Abstract
A word v is a subsequence (also called scattered factor) of a word w if there exist (possibly
empty) words x1, . . . ,x`+1 and v1, . . . , v` such that v = v1 . . . v` and w = x1v1 . . .x`v`x`+1. That
is, v is obtained from w by removing some of its letters.

The study of the relationship between words and their subsequences is a central topic in
combinatorics on words and string algorithms, as well as in language and automata theory (see,
e.g., the chapter Subwords by J. Sakarovitch and I. Simon in [23, Chapter 6] for an overview of
the fundamental aspects of this topic, and [24] for a more practical perspective).

A major area of research related to subsequences is the study of the set of all subsequences
of bounded length of a word, initiated by Simon in his PhD thesis [25]. In particular, Simon
defined and studied (see [23, 26]) the relation ⇠k (called now Simon’s congruence) between
words having exactly the same set of subsequences of length at most k. The surveys [20, 21]
overview some of the extensions of Simon’s seminal work from 1972 in various areas related
to automata theory. Moreover, ⇠k is a well-studied relation in the area of string algorithms
too. The problems of deciding whether two given words are ⇠k-equivalent, for a given k, and
to find the largest k such that two given words are ⇠k-equivalent (and their applications) were
heavily investigated in the literature, see [9] and the references therein. This year, optimal
solutions were given for both these problems [2, 9]. In [2] it was shown how to compute the
shortlex normal form of a given word in linear time, i.e., the minimum representative of a ⇠k-
equivalence class w.r.t. shortlex ordering. This can be directly applied to test whether two words
are ⇠k-equivalent: they need to have the same shortlex normal form. In [9], a tree-like structure,
called Simon-tree, was used to represent the equivalence classes induced by ⇠k on the set of
suffixes of a word, for all possible values of k, and then, given two words, a correspondence
between their Simon-trees was constructed to compute in linear time the largest k for which
they are ⇠k-equivalent.

Extending the algorithmic work on ⇠k, the following problem seems interesting: given two
words w and u and an integer k, which is the minimal number of edit operations we need to
perform on w to obtain a word v such that v ⇠k u? As edit operations we consider, as usual,
insertion, deletion, and substitution of letters. Rephrasing, we ask how far (w.r.t. the edit
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distance) are two words from being ⇠k-equivalent, or, how far is the word w from the set of all
words which are ⇠k-equivalent to u. To this end, we can replace the target-word u by a set U
of words of length k and ask for the minimal number of edit operations we need to perform on
w to obtain a word v whose set of subsequences of length k is (or includes) U .

This direction of research is not new, and has always been a source of interesting problems.
One of the most classical and well-understood string-problems is computing the edit distance
between words [18], for which an optimal (up to poly-logarithmic factors) solution exists [1,19].
The problem of computing the edit distance between a word and a language, or between two
languages, is also a well-studied problem, in various settings (see, e.g., [3, 5, 6, 13, 15]).

We make some initial steps in the study of the problems introduced above. While we do not
solve their general form, we investigate one of their particular cases which seems interesting,
meaningful, and well motivated. We follow the line of research of [2, 7, 16] and focus on a
special ⇠k-class of words. A word w is k-subsequence universal (for short k-universal) with
respect to an alphabet S if its set of subsequences of length k equals Sk. In the problems we
consider, S will be the set alph(w) of letters occurring in the input w. The maximum k for which
a word w is k-universal is the universality index of w. In this context, we consider the problem
of computing for a given word w and an integer k the minimal number of edit operations we
need to perform on w in order to obtain a k-universal word. That is, we are interested in the edit
distance from the input word w to the set of k-universal words w.r.t. alph(w).

Before presenting our results, we briefly discuss the motivation of considering k-subsequence
universal words. Firstly, using the name universal in this context is not unusual. The classical
universality problem (see, e.g., [14]) is whether a given language L (over an alphabet S, and
specified by an automaton or grammar) is equal to S⇤. The works [10, 22] and the references
therein discuss many variants of and results on the universality problem for various language
generating and accepting formalisms. The universality problem was considered for words [8]
and partial words [11] w.r.t. their factors. More precisely, one is interested in finding, for a given
`, a word w over an alphabet S, such that each word of length ` over S occurs exactly once as a
contiguous factor of w. De Bruijn sequences [8] fulfil this property and have many applications
in computer science or combinatorics, see [4, 11] and the references therein. In [16, 17] the au-
thors define the notion of k-rich words in relation to the height of piecewise testable languages,
a class of simple regular languages with applications in learning theory, databases theory, or
linguistics (see [17] and the references therein). The class of k-rich words coincides with that
of k-subsequence universal words. The study of k-subsequence universal words was continued,
from a combinatorial point of view, in [2, 7]. So, it seems that investigating this class also from
an algorithmic perspective is motivated by, fits in, and even enriches this well-developed and
classical line of research.

Our results. Firstly, we note that when we want to increase the universality of a word by
edit operations, it is enough to use only insertions. Similarly, when we want to decrease the
universality of a word, it is enough to consider deletions. So, to measure the edit distance to the
class of k-subsequence universal words, for a given k, it is enough to consider either insertions
or deletions. However, changing the universality of a word by substitutions (both increasing and
decreasing it) is interesting in itself as one can see the minimal number of substitutions needed
to transform a word w into a k-universal word as the Hamming distance [12] between w and
the set of k-universal words. Thus, we consider all these operations independently and propose
efficient algorithms computing the minimal number of insertions, deletions, and substitutions,
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respectively, needed to apply to a given word w in order to reach the class of k-universal words
(w.r.t. the alphabet of w), for a given k. The time needed to compute these numbers is O(nk)
in the case of deletions and substitutions, as well as in the case of insertions if k 2 O(cn) for
some constant c (for even larger values of k we need to add roughly the time complexity of
multiplying n and k).

Our algorithms are based, like most edit distance algorithms, on a dynamic programming
approach. However, implementing such an approach within the time complexities stated above
does not seem to follow directly from the known results on the word-to-word or word-to-
language edit distance. In particular, we do not explicitly construct any k-universal word nor
any representation (e.g., automaton or grammar) of the set of k-universal words, when comput-
ing the distance from the input word w to this set. Rather, we can compute the k-universal word
which is closest w.r.t. edit distance to w as a byproduct of our algorithms. In our approach,
we first develop several efficient data structures. Then, for each of the considered operations,
we make several combinatorial observations, allowing us to restrict the search space of our
algorithms, and creating a framework where our data structures can be used efficiently.
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Abstract

We give a short introduction to ins-del-sub systems, that is, insertion-deletion systems
which are extended with substitutions as a further type of operations. Additionally we give
an overview over the results presented in [6] and [7], in which the computational power of
a number of ins-del-sub systems is investigated. For more details on the results we refer to
[6] and [7].

1. Introduction

Insertion-deletion systems, or ins-del systems for short, are well-established as computational
devices and as a research topic within Formal Languages throughout the past nearly 30 years,
starting off with the PhD thesis of Lila Kari [2].

Corresponding to the mismatched annealing of DNA sequences, both the insertion and dele-
tion operation have a strong biological background which led to their study in the molecular
computing framework (cf. [4]). Insertion rules add a substring to a string, given a specified left
and right context, while deletion rules remove a substring from a string given a specified left
and right context. Studies about the context dependency of ins-del systems revolve around the
question how much context information is (in-)sufficient for a ins-del system to reach compu-
tational completeness, given the ability to add a substring of length n and to delete a substring
of length p.

The replacement of single letters (possibly within some context) by other letters by an op-
eration called substitution is discussed in [1, 3], again from a biocomputing background. Inter-
estingly, all theoretical studies on grammatical mechanisms involving insertions and deletions
omitted including the substitution operation in their studies. We started stepping into this gap
in [6, 7].
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2. Basic Definitions

An ins-del-sub system is a -tuple ID = (V,T,A,I,D), consisting of two alphabets V and T with
T ✓ V , a finite language A over V , a set of insertion rules I and a set of deletion rules D. Both
sets of rules are formally defined as sets of triples of the form (u,a,v) with a,u,v 2 V

⇤ and
a 6= �. We call elements occurring in T terminal symbols, while referring to elements of V \T
as nonterminals. Elements of A are called axioms.

Let w1uvw2, with w1,u,v,w2 2 V

⇤, be a string. Applying the insertion rule (u,a,v) 2 I

inserts the string a 2 V

⇤ between u and v, which results in the string w1uavw2.
The application of a deletion rule (u,a,v) 2D results in the removal of an substring a from

the context (u,v). More formally let w1uavw2 2 V

⇤ be a string. Then, applying (u,a,v) 2D

results in the string w1uvw2.
We define the relation =) as follows: Let x,y 2 V

⇤. Then we write x =) y if y can be
obtained by applying an insertion or deletion rule to x. The language generated by ID is defined
by L(ID) = {w 2 T

⇤ | ↵=)⇤
w,↵ 2 A}.

The size of ID describes its complexity and is defined by a vector (n,m,m

0;p,q,q0), where

n= max{|a| | (u,a,v) 2 I}, p= max{|a| | (u,a,v) 2D},
m= max{|u| | (u,a,v) 2 I}, q = max{|u| | (u,a,v) 2D}, and
m

0 = max{|v| | (u,a,v) 2 I}, q0 = max{|v| | (u,a,v) 2D}.

By INSm,m0
n DELq,q0

p we denote the family of languages generated by ins-del systems of size
(n,m,m

0;p,q,q0).[5]
We define substitution rules to be of the form (u,a ! b,v); u,v 2 V

⇤; a,b 2 V . Let
w1uavw2; w1,w2 2 V

⇤ be a string over V . Then applying the substitution rule (u,a ! b,v)
allows us to substitute a single letter a with another letter b in the context of u and v, re-
sulting in the string w1ubvw2. Formally, we define an ins-del-sub system to be a 6-tuple
ID& = (V,T,A,I,D,S), where V,T,A,I and D are defined as in the case of usual ins-del sys-
tems and S is a set of substitution rules. Let x = w1uavw2 and y = w1ubvw2 be strings over
V . We write x=)sub y iff there is a substitution rule (u,a! b,v). In the context of ins-del-sub
systems, we write =̂) to denote any of the relations =) or =)sub. The language generated by
an ins-del-sub system ID& is defined as L(ID&) = {w 2 T

⇤ | ↵ =̂)⇤
w, ↵ 2 A}.

As with ins-del systems, the complexity of an ins-del-sub system ID& = (V,T,A,I,D,S)
is measured via its size, which is defined as a tuple (n,m,m

0;p,q,q0;r,r0), where n,m,m

0
,p,q,

and q

0 are defined as in ins-del systems while r=max{|u| | (u,a! b,v)2S} and r

0 =max{|v| |
(u,a! b,v)2 S}. We refer to the family of languages generated by ins-del-sub systems of size
(n,m,m

0;p,q,q0;r,r0) by INSm,m0
n DELq,q0

p SUBr,r0
.

3. Results

The main focus of our investigation is the question when is the addition of substitution rules
enough increase the computational of an ins-del system to computational completeness and
when is it insufficient. The main results of [6] and [7] are presented in Table 1 and show which
kind of substitution rules are sufficient for a non-complete systems to reach computational com-
pleteness completeness and which systems still cannot reach computational completeness.
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family of insertion-deletion Language source
system with substitution rules family relation
INS1,0

1 DEL1,0
1 SUB0,1 = RE [7]

INS1,0
1 DEL0,0

0 SUB0,1 ✓ CS [7]
INS1,1

1 DEL1,0
1 SUB1,0 = RE [7]

INS1,0
1 DEL0,0

2 SUB0,1 = RE [7]
INS0,0

2 DEL0,0
2 SUB0,1 = RE [6]

INS0,0
1 DEL0,0

1 SUB1,1 = RE [6]
INS0,0

1 DEL0,0
0 SUB1,1 = CS [6]

INS1,0
1 DEL0,0

1 SUB0,0 ⇢ CF [6]
INS1,0

1 DEL1,1
1 SUB0,0 ⇢ RE [6]

Table 1: main results of [6] and [7]

For instance consider the family of ins-del systems of size (1,1,0;1,1,0). These systems are
not computationally complete. (In fact there are regular languages which even ins-del sys-
tems of size (1,1,0;1,1,1) cannot generate [5, Theorem 5.3]). It is shown that extending such
systems with substitution rules which have single letter right context is sufficient to reach com-
putational completeness. More precisely: It is known that the family of ins-del systems of size
(1,1,1;1,1,1) is computationally complete. Ins-del-sub systems of size (1,1,0;1,1,0;0,1) can
simulate such systems and hence the family of ins-del-sub systems of size (1,1,0;1,1,0;0,1) is
computationally complete as well.

On the other hand extending ins-del systems of size (1,1,0;0,0,0) with substitution rules
which have single letter right context is still not enough to become equivalent to RE. In fact, it
is shown that ins-del-sub systems which omit deletion rules cannot become more powerful CS.

We note that ins-del-sub systems are closed under reversal operator R, that is, it holds
that L 2 INSm,m0

n DELq,q0
p SUBr,r0 if and only if LR 2 INSm0,m

n DELq0,q
p SUBr0,r. Therefore, as

RE is closed under reversal as well, it holds that INSm,m0
n DELq,q0

p SUBr,r0 = RE if and only if
INSm0,m

n DELq0,q
p SUBr0,r = Re. Hence, INS0,1

1 DEL0,1
1 SUB1,0 = RE holds for instance as well.
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Abstract

This is a summary of the results presented in [2], where the synchronization problem for
finite state automata is generalized to deterministic real-time push-down automata and sub-
classes thereof, such as deterministic real-time one counter automata (DCAs) and partially
blind DCAs. In [2] the complexity of these generalizations is considered.

1. Definitions

We refer to the empty word as ✏. For a finite alphabet S we denote with S⇤ the set of all words
over S and with S+ =SS⇤ the set of all non-empty words. For i2N we set [i] = {1,2, . . . , i}. For
w 2 S⇤ we denote with |w| the length of w, with w[i] for i2 [|w|] the i’th symbol of w, and with
w[i..j] for i, j 2 [|w|] the factor w[i]w[i+1] . . .w[j] of w. We call w[1..i] a prefix and w[i..|w|]
a suffix of w. The reversal of w is denoted by w

R, i.e., for |w|= n, wR = w[n]w[n�1] . . .w[1].
We call A= (Q,S,�, q0,F ) a deterministic finite automaton (DFA for short) if Q is a finite

set of states, S is a finite input alphabet, � is a transition function Q⇥S ! Q, q0 is the initial
state and F ✓ Q is the set of final states. The transition function � is generalized to words by
�(q,w) = �(�(q,w[1]),w[2..|w|]) for w 2 S⇤. A word w 2 S⇤ is accepted by A if �(q0,w) 2 F

and the language accepted by A is defined by L(A) = {w 2 S⇤ | �(q0,w) 2 F}. We extend � to
sets of states Q0 ✓Q or to sets of letters S0 ✓ S, letting �(Q0

,S0) = {�(q0,�0) | (q0,�0)2Q

0⇥S0}.
Similarly, we may write �(Q0

,S0) = p to define �(q0,�0) = p for each (q0,�0) 2Q

0⇥S0.
The synchronization problem for DFAs (called DFA-SYNC) asks for a given DFA A whether

there exists a synchronizing word for A. A word w is called a synchronizing word for a DFA A

if it brings all states of the automaton to one single state, i.e., |�(Q,w)|= 1.
We call M = (Q,S,G,�, q0,?,F ) a deterministic push-down automaton (DPDA for short)

if Q is a finite set of states; the finite sets S and G are the input and stack alphabet, respectively;
� is a transition function Q⇥S⇥G !Q⇥G⇤; q0 is the initial state; ? 2 G is the stack bottom

(A)The second author was supported by DFG project FE 560/9-1.
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symbol which is only allowed as the first (lowest) symbol in the stack, i.e., if �(q,a,�) = (q0,�0)
and �

0 contains ?, then ? only occurs in �

0 as its prefix and moreover, � =?; and F is the set
of final states. We will only consider real-time push-down automata and forbid ✏-transitions,
as can be seen in the definition.1 Notice that the bottom symbol can be removed, but then the
computation gets stuck.

Following [1], a configuration of M is a tuple (q,�) 2Q⇥G⇤. For a letter � 2 S and a stack
content � with |�| = n we write (q,�)

��! (q0,�[1..(n� 1)]�) if �(q,�,�[n]) = (q0,�). This
means that the top of the stack � is the right end of �. We also denote with �! the reflexive
transitive closure of the union of ��! over all letters in S. The input words on top of �! are
concatenated accordingly, so that �!=

S
w2S⇤

w�!. The language L(M) accepted by a DPDA
M is L(M) = {w 2 S⇤ | (q0,?)

w�! (qf ,�), qf 2 F}. We call the sequence of configurations
(q,?)

w�! (q0,�) the run induced by w, starting in q, and ending in q

0. We might also call q0 the
final state of the run.

We will discuss three different concepts of synchronizing DPDAs. For all concepts we
demand that a synchronizing word w 2 S⇤ maps all states, starting with an empty stack, to the
same synchronizing state, i.e., for all q,q0 2 Q : (q,?)

w�! (q,�),(q0,?)
w�! (q,�0). In other

words, for a synchronizing word all runs started on some states in Q end up in the same final
state.

In addition to synchronizing the states of a DPDA we will consider the following two con-
ditions for the stack content: (1) � = �

0 =?, (2) � = �

0.
We will call (1) the empty stack model and (2) the same stack model. In the third case, we

do not put any restrictions on the stack content and call this the arbitrary stack model.
As we are only interested in synchronizing a DPDA, we can neglect the start and final states.

It turns out that synchronizability of DPDAs is undecidable, which is in stark contrast to the
situation with DFAs, where this problem is solvable in polynomial time. Hence, it is interesting
to discuss deterministic variants of classical sub-classes of push-down automata. Here, we focus
on one-counter languages and on linear languages and related classes.

A deterministic (one) counter automaton (DCA) is a DPDA where |G\{?}|= 1. Note that
our DCAs can perform zero-tests by checking if the bottom-of-stack symbol is on top of the
stack. As we will see that also with this restriction, synchronizability is still undecidable, we
further restrict them to the partially blind setting [4]. This means in our formalization that a
transition �(q,�,x) = (q0,�) either satisfies x 6= ?, or x is a prefix of �, i.e., � = x�

0, and then
both �(q,�,1) = (q0,1�0) (for G = {1,?}) and �(q,�,?) = (q0,?�

0). The situation is even more
delicate with one-turn or, more general, finite-turn DPDAs, whose further discussion and formal
definition we defer to the specific section below.

We are now ready to define a family of synchronization problems, the complexity of which
will be our main subject.

Definition 1.1 (SYNC-DPDA-EMPTY)
Given: DPDA M = (Q,S,G,�,?).
Question: Does there exist a word w 2 S⇤ that synchronizes M in the empty stack model?

1Allowing ✏-transitions, the considered automaton model is closer related to NFAs than to DFAs, and gives rise
to adapt the concept of D1, D2, and D3 directing words (introduced in [5]).
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For the same stack model, we refer to the synchronization problem above as SYNC-DPDA-
SAME and as SYNC-DPDA-ARB in the arbitrary stack model. Variants of these problems are
defined by replacing the DPDA in the definition above by a DCA, a deterministic partially
blind counter automaton (DPBCA), or by adding turn restrictions, in particular, whether the
automaton is allowed to make zero or one turns of its stack movement.

Finite-turn PDAs are introduced in [3]. From the formal language side, it is known that
one-turn PDAs characterize the rather familiar family of linear context-free languages, usually
defined via grammars. In our setting, the automata view is more interesting. We adopt the
definition in [6]. For a DPDA M , an upstroke of M is a sequence of configurations induced by
an input word w such that no transition decreases the stack-height. Accordingly, a downstroke
of M is a sequence of configurations in which no transition increases the stack-height. A stroke
is either an upstroke or a downstroke. Note that exchanging the top symbol of the stack is
allowed in both an up- and a downstroke. A DPDA M is an n-turn DPDA if for all w 2 L(M)
the sequence of configurations induced by w can be split into at most n+1 strokes. Especially
for 1-turn DPDAs, each sequence of configurations induced by an accepting word consists of
one upstroke followed by a most one downstroke. There are two subtleties when translating
this concept to synchronization: (a) there is no initial state so that there is no way to associate a
stroke counter to a state, and (b) there is no language of accepted words that restricts the set of
words on which the number of strokes should be limited. We therefore generalize the concept of
finite-turn DPDAs to finite-turn synchronization for DPDAs in the following way. This opens
up quite an interesting complexity landscape.

Definition 1.2 n-TURN-SYNC-DPDA-EMPTY
Given: DPDA M = (Q,S,G,�, q0,?,F ).
Question: Is there a synchronizing word w 2 S⇤ in the empty stack model, such that for all
states q 2Q, the sequence of configurations (q,?)

w�! (q,?) consists of at most n+1 strokes?

We call such a synchronizing word w an n-turn synchronizing word for M . We define n-
TURN-SYNC-DPDA-SAME and n-TURN-SYNC-DPDA-ARB accordingly for the same stack
and arbitrary stack models. Further, we extend the problem definition to real-time DCAs.

Results of the paper

class of automata/problem empty stack model same stack model arbitrary stack model
DPDA undecidable undecidable undecidable
1-Turn-Sync-DPDA undecidable undecidable undecidable
0-Turn-Sync-DPDA PSPACE-complete undecidable PSPACE-complete
DCA undecidable undecidable undecidable
1-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
0-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
DPBCA decidable decidable decidable

Table 1: Complexity status of the synchronization problem for different classes of deterministic real-
time push-down automata in different stack synchronization modes as well as finite-turn variants of the
respective synchronization problem.
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We summarize our results in Table 1. In short, while already seemingly innocuous exten-
sions of finite automata (with counters or with 1-turn push-downs) result in an undecidable syn-
chronizability problem, some extensions do offer some algorithmic synchronizability checks,
although nothing efficient.
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