
29. Theorietag
Automaten und Formale Sprachen

Bremen, 26./27. September 2019

Technischer Bericht der AG Datenbanken
Fachbereich 3

Universität Bremen
Herausgeber: Sebastian Maneth

Vorwort

Theorietage haben eine lange Tradition in verschiedenen Fachgruppen der Gesell-
schaft für Informatik (GI). Die Theorietage der GI Fachgruppe “Automaten und
Formalen Sprachen” finden seit 1991 jährlich statt. Es ist auch Tradition, vor dem
eigentlich Theorietag einen Workshop mit eingeladenen Vorträgen zu organisieren.
Auf dem diesjährigen 29. Theorietag gibt es keinen gesonderten Workshop, son-
dern die eingeladenen Vorträge werden in das Gesammtprogramm eingeflochten.
Dies führt dazu, dass die Länge des Theorietags anderthalb Tage anstatt einem Tag
beträgt.

Zum diesjärigen Theorietag sind 37 Teilnehmer registriert und es werden 18 or-
dentliche Vorträge gehalten. Der vorliegende technische Bericht enthält die Zusam-
menfassungen dieser 18 Vorträge. Er wird elektronisch während des Theorietages
zur Verfügung gestellt, damit Teilnehmer dort bei Bedarf die vorgestellten Resultate
nachschlagen können.

Ausserdem werden drei eingeladenen Vorträge gehalten. Das übergeordnete
Thema der eingeladenen Vorträge ist “Datenbanktheorie”. Die folgenden herausra-
gende Wissenschaftler konnten eingeladen werden und halten Voträge zu folgenden
Themen:
• Mikołaj Bojańczik (Universität Warschau, Polen)

Polyregular Functions

• Wim Martens (Universität Bayreuth)
Optimization and Evaluation of Real-Life Graph Queries

• Thomas Schwentick (Technische Universität Dortmund)
Dynamic Complexity: Recent and Complex Updates

Wir danken der Gesellschaft für Informatik für die freundliche Unterstützung,
die es ermöglicht, einen Teil der Reisekosten der eingeladenen Vortragenden abzu-
decken. Wir danken der Universität Bremen für finanzielle Unterstützung und für
die Bereitstellung der Räume.

Wir wünschen allen Teilnehmenden interessante und anregende Theorietage in
Bremen!

Sebastian Maneth
Bremen, 22.09.2019

Conference Program

Thursday, September 26 1

Invited Talk, 9:00–10:00h 1

Session 1, 10:30–11:30h 1
1 On Solution Sets of Word Equations

Dirk Nowotka

2 On Iterated Uniform Finite-State Transducers
Andreas Malcher

3 Semirecognizable Sets and Right One-Way Jumping Finite Automata
Simon Beier

Session 2, 11:40–12:40 7
7 Tree Substitution Grammars

Andreas Maletti

8 Average Case Analysis of Leaf-Centric Binary Tree Sources
Louisa Seelbach Benkner

11 Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and Splitting/Fusion
Grammars
Aaron Lye

Invited Talk, 14:00–15:00h 16

Session 3, 15:30–16:30h 16
16 Structural Sparsity

Sebastian Siebertz

22 Balancing Straight-Line Programs
Markus Lohrey

23 Decidability and Complexity of A L C OI F with Transitive Closure
Jean Christoph Jung

Session 4, 16:40–17:40h 24
24 Tissue P Systems with Anti-Cells

Rudolf Freund

28 Accepting Networks of Evolutionary Processors with Resources Restricted Filters
Bianca Truthe

32 How are Eulerian trails connected to formal languages?
Meenakshi Paramasivan

Invited Talk, 9:00–10:00h 36

Friday, September 27 36

Session 5, 10:30–11:30h 36
36 Erweiterungen zu kleinen synchronisierenden Wörtern

Henning Fernau

38 Computational Complexity of Synchronization under Regular Constraints
Petra Wolf

42 Eigenschaften und Zustandskomplexität kommutativer regulärer Sprachen
Stefan Hoffmann

Session 6, 11:40–12:40 45
45 Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

Florin Manea
49 Separating Languages of Infinite Words in the Mostowski Hierarchy

Christopher Hugenroth
52 Regular Expressions with Backreferences: Polynomial-Time Matching Techniques

Markus L. Schmid

THEORIE-TAG 2019
S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019

Universität Bremen, Technischer Bericht der AG Datenbanken, S. 1–1.

On Solution Sets of Word Equations
Dirk Nowotka

Dependable Systems Group, Dept. of Computer Science,
Kiel University, 24098 Kiel, Germany

dn@zs.uni-kiel.de

Abstract

We take a fresh look at word equations which is different from the approaches of
Makanin (exponent of periodicity) and Jez (recompression). Using representations of let-
ters as arbitrary but distinct numbers, we are able to find some normalisations on the rep-
resentation of the solutions of word equations which enable us to solve two long-standing
open problems. Firstly, we prove that a one variable word equation with constants has
either at most three or an infinite number of solutions. This bound is both surprising and
optimal. Secondly, we consider independent systems of three variable word equations with-
out constants and establish a constant bound on the size of such systems, if they allow a
nonperiodic solution.

THEORIE-TAG 2019
S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019

Universität Bremen, Technischer Bericht der AG Datenbanken, S. 2–2.

On Iterated Uniform Finite-State Transducers
Martin Kutrib(A) Andreas Malcher(A) Carlo Mereghetti(B)

Beatrice Palano(C)

(A)Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

andreas.malcher@informatik.uni-giessen.de

(B)Dipartimento di Fisica “Aldo Pontremoli”,
Università degli Studi di Milano

via Celoria 16, 20133 Milano, Italy
mereghetti@unimi.it

(C)Dipartimento di Informatica “G. degli Antoni”,
Università degli Studi di Milano

via Celoria 18, 20133 Milano, Italy
palano@unimi.it

Zusammenfassung

We introduce the deterministic computational model of an iterated uniform finite-state
transducer (IUFST). A IUFST performs the same length-preserving transduction on several
left-to-right sweeps. The first sweep takes place on the input string, while any other sweep
processes the output of the previous one. The IUFST accepts or rejects upon halting in an
accepting or rejecting state along its sweeps. First, we focus on constant sweep bounded
IUFSTs. We study their descriptional power vs. deterministic finite automata, and the state
cost of implementing language operations. Then, we focus on non-constant sweep bounded
IUFSTs, showing a nonregular language hierarchy depending on the sweep complexity. The
hardness of some classical decision problems on constant sweep bounded IUFSTs is also
investigated.

THEORIE-TAG 2019
S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019

Universität Bremen, Technischer Bericht der AG Datenbanken, S. 3–6.

Semirecognizable Sets and
Right One-Way Jumping Finite Automata

Simon Beier Markus Holzer

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{simon.beier,holzer}@informatik.uni-giessen.de

Abstract

We generalize the notion of recognizable subsets of monoids and call a subset of a
monoid semirecognizable if it is the premimage of a finite set under a monoid homomor-
phism. Especially semirecognizable subsets of the free commutative moniod Nk are investi-
gated by us; those build a subfamily of the semilinear sets. A key role in our theory is played
by lattices, which are special semirecognizable sets that extend “the pattern” of a linear set
to the whole Nk. We show connections between semirecognizable subsets of Nk and ra-
tional cones. Right one-way jumping finite automata (ROWJFAs) are an automaton model
for deterministic but non-contiguous information processing that was introduced in 2016
by Chigahara, Fazekas, and Yamamura. In 2018 we showed that the permutation closed
languages accepted by ROWJFAs are exactly the permutation closed semirecognizable lan-
guages. Using our results about semirecognizable subsets of Nk we give a characterization
of permutation closed languages accepted by ROWJFAs with multiple initial states.

1. Introduction
A subset S of a monoid M is called recognizable if there are a finite monoid N and a monoid
homomorphism f : M →N such that S = f−1(f(S)). So, for each a ∈M the value f(a) tells
us if a ∈ S. There is a connection between recognizability and the syntactic congruence, which
was introduced in a paper by Rabin and Scott and was credited to Myhill [7]. Given a subset S
of a monoid M , the syntactic congruence ∼S is an equivalence relation on M . For a,b ∈M we
have a∼S b if for all c,d ∈M the condition cad ∈ S is equivalent to the condition cbd ∈ S. The
set M/∼S is a monoid, called the syntactic monoid of S. A subset of a monoid is recognizable
if and only if its syntactic monoid is finite. The recognizable subsets of the free monoid over a
finite set are the regular languages. McKnight’s Theorem says that each recognizable subset of
a finitely generated monoid is rational. This gives us especially that each recognizable subset
of the free commutative monoid Nk is semilinear. A permutation closed language is regular if
and only if its Parikh-image is a recognizable subset of Nk. The recognizable subsets of Nk

are well understood, because Mezei’s Theorem states that these are exactly the finite unions of
direct products of semilinear subsets of N. Using Presburger arithmetic, Ginsburg and Spanier
showed that it is deciadable if a given semilinear set is recognizable [6].

Recognizability is generalized by us in the following way. A subset S of a monoid M is
called semirecognizable if there are a monoid N and a monoid homomorphism f : M → N

Semirecognizable Sets and Right One-Way Jumping Finite Automata 4

such that f(S) is finite and S = f−1(f(S)). This is equivalent to the condition that the pro-
jection S/ ∼S of S to its syntactic monoid is finite. If we replace “finite” by “a singleton or
the empty set” in the last two sentences, we get the notion of a strongly semirecognizable sub-
set of a monoid. We are especially interested in (strongly) semirecognizable subsets of Nk.
Each semirecognizable subset of Nk is a finite union of strongly semirecognizable linear sub-
sets of Nk. It is decidable whether a given semilinear set is (strongly) semirecognizable. We
characterize when a linear subset of Nk is semirecognizable and show a connection to ratio-
nal cones. Lattices are introduced as special strongly semirecognizable subsets of Nk. They
are defined like linear subsets of Nk, but allowing integer coefficients for the period vectors,
instead of only natural numbers. However our lattices are still, per definition, subsets of Nk.
Each strongly semirecognizable subset of Nk equals a lattice if we only consider vectors where
all components are “large enough”. Motivated by the result of Ginsburg and Spanier that each
semilinear set is a finite union of linear sets with linearly independent periods [5], we study
in which cases lattices and arbitrary strongly semirecognizable subsets of Nk are a finite union
of (strongly) semirecognizable linear sets with linearly independent periods; again there is a
connection to rational cones. That is why we study these objects in more detail and show that
the set of vectors with only non-negative components in a linear subspace of dimension n of Rk

spanned by a subset of Nk always forms a rational cone spanned by a linearly independent sub-
set of Nk if and only if n ∈ {0,1,2,k}. A result is given that states in terms of lattices when an
arbitrary subset of Nk is a finite union of (strongly) semirecognizable (linear) subsets of Nk.

Right one-way jumping finite automata (ROWJFAs) were proposed by Chigahara, Fazekas,
and Yamamura [4]. These automata are defined like DFAs with a partial transition function, but
process the input differently: If the device cannot read the current symbol, the head jumps over
it and continues the computation with the next one. When the head reaches the end of the input,
it jumps back to the beginning and goes on with its deterministic computation. We proved that
the permutation closed languages accepted by ROWJFAs are exactly the permutation closed
semirecognizable languages [1]. A characterization of permutation closed languages accepted
by ROWJFAs with multiple initial states is given by applying our results about semirecognizable
subsets of Nk. The results of the current paper are mainly from [3], see also [2].

2. Results
A subset of Nk is called linear if it is of the form L(~c,P) = {~c+∑~p∈P λ~p ·~p | ∀~p ∈ P : λ~p ∈N}
for a finite set P ⊆ Nk and a ~c ∈ Nk, where P is called the set of periods and ~c is called the
constant vector of this representation. A subset of Nk is called semilinear if it is a finite union
of linear subsets of Nk. Clearly, the (strongly) semirecognizability of a linear subset of Nk

depends only on its period set, but not on the constant vector.

Proposition 2.1 Each semirecognizable subset of Nk is a finite union of strongly semirecogniz-
able linear subsets of Nk. It is decidable if a given semilinear set is (strongly) semirecognizable.

For a set S ⊆Rk let span(S) be the linear subspace of Rk spanned by S. For a finite S ⊆Zk

the rational cone spanned by S is cone(S) = {∑~s∈S λ~s ·~s | ∀~s∈ S : λ~s ∈R≥0 }⊆Rk. A linearly
independent rational cone in Rk is a set of the form cone(S) for a linearly independent S ⊆ Zk.
It is well known that each rational cone is a finite union of linearly independent rational cones.

Semirecognizable Sets and Right One-Way Jumping Finite Automata 5

We define two properties of subsets of Nk which involve rational cones. Let k ≥ 0 and S ⊆Nk.
Then, the set S has the linearly independent rational cone property if span(S)∩ (R≥0)

k =
cone(T), for some linearly independent T ⊆ Nk. The set S has the own rational cone property
if S is finite and it holds span(S)∩ (R≥0)

k = cone(S).

Theorem 2.2 Let k≥ 0 and P ⊆Nk be finite. Then, L(~0,P) is semirecognizable if and only if P
has the own rational cone property. If P is linearly independent, L(~0,P) is semirecognizable if
and only if it is strongly semirecognizable.

A subset of Nk is called a lattice if it is of the form La(~c,P) = {~c+∑~p∈P λ~p · ~p | ∀~p ∈
P : λ~p ∈ Z} ∩Nk for a finite set P ⊆ Nk and a ~c ∈ Nk. Clearly, each lattice is a strongly
semirecognizable subset of Nk. For ~x,~y ∈ Rk we write ~x≤ ~y if all components of ~x are less or
equal to the corresponding components of ~y.

Lemma 2.3 Let k ≥ 0, S be a strongly semirecognizable subset of Nk, and ~s ∈ S. Then, there
is a lattice L⊆ Nk such that {~x ∈ S | ~x≥ ~s}= {~x ∈ L | ~x≥ ~s}.

Theorem 2.4 For k ≥ 0, ~c ∈ Nk, and a finite P ⊆ Nk the following conditions are equivalent:
1. The lattice La(~c,P) is a finite union of semirecognizable linear sets with linearly independent
periods. 2. The lattice La(~c,P) is a finite union of strongly semirecognizable linear sets with
linearly independent periods. 3. The set P has the linearly independent rational cone property.

There is a generalization of Theorem 2.4 from lattices to strongly semirecognizable sets.

Theorem 2.5 Let k ≥ 0 and n ∈ {0,1, . . . ,k}. Then, the condition that each S ⊆ Nk fulfill-
ing dim(span(S)) = n has the linearly independent rational cone property holds if and only
if n ∈ {0,1,2,k}.

A subset S ⊆Nk is called a quasi lattice if there are ~y ∈Nk, m≥ 0, ~c1, ~c2, . . . , ~cm ∈Nk, and
finite P1,P2, . . . ,Pm ⊆ Nk such that the set {~x ∈ S | ~x ≥ ~y} is equal to {~x ∈ ⋃m

j=1La(~cj ,Pj) |
~x≥ ~y}. For k ≥ 0 and T ⊆ {1,2, . . . ,k} with T =

{
t1, t2, . . . , t|T |

}
and t1 < t2 < · · · < t|T | we

define πk,T : Nk→ N|T | through πk,T (~x1,~x2, . . . ,~xk) =
(
~xt1 ,~xt2 , . . . ,~xt|T |

)
.

Theorem 2.6 For a k ≥ 0 and a subset S ⊆ Nk the following three conditions are equiv-
alent: 1. The set S is a finite union of semirecognizable sets. 2. The set S is a finite
union of strongly semirecognizable linear sets. 3. For all T ⊆ {1,2, . . . ,k} and ~x ∈ N|T | the
set πk,{1,2,...,k}\T

(
{~z ∈ S | πk,T (~z) = ~x}

)
is a quasi lattice.

A ROWJFA with multiple initial states is a system A = (Q,Σ, δ,S,F), where the symbols
have the same meaning as for an ordinary DFA with multiple initial states and a partial transition
function. We define the binary relation �A on the set QΣ∗ as follows. For p,q ∈ Q, a ∈
Σ, and w ∈ Σ∗ with δ(p,a) = q we have paw �A qw. On the other hand, for p ∈ Q, a ∈ Σ,
and w ∈ Σ∗ such that δ(p,a) is undefined we have paw �A pwa. The language accepted by A
is L(A) = {w ∈ Σ∗ | ∃s∈ S, f ∈ F : sw�∗A f }. Clearly, each language accepted by a ROWJFA
with multiple initial states is a finite union of languages accepted by ROWJFAs with a single
initial state. However, it is not clear that each permutation closed language accepted by a
ROWJFA with multiple initial states is a finite union of permutation closed languages accepted

Semirecognizable Sets and Right One-Way Jumping Finite Automata 6

by ROWJFAs with a single initial state. Such a characterization would be very useful, because
in an earlier paper we have shown that the permutation closed languages accepted by ROWJFAs
with a single initial state are exactly the permutation closed semirecogniazable languages [1].

Theorem 2.7 The Parikh-image of each permutation closed language accepted by a ROWJFA
with multiple initial states is a quasi lattice.

To get a characterization result, we define the language operation of disjoint quotient of a
language L⊆ Σ∗ with a word w ∈ Σ∗ as follows:

L/dw = {v ∈ Σ∗ | vw ∈ L, ∀a ∈ Σ : |v|a · |w|a = 0}= (L/w)∩{a ∈ Σ | |w|a = 0}∗.

The family of permutation closed semirecogniazable languages is closed under quotient with
a word and under disjoint quotient with a word. For an alphabet Σ, Γ ⊆ Σ, and an L ⊆ Σ∗
accepted by a ROWJFA with multiple initial states, L∩Γ∗ is also accepted by such a device.
Using Theorem 2.7 and our results about semirecognizable subsets of Nk, we get:

Corollary 2.8 Let Σ be an alphabet and L⊆ Σ∗ be permutation closed. Then, L is a finite union
of permutation closed semirecognizable languages if and only if for all w ∈ Σ∗ the language
L/dw is accepted by a ROWJFA with multiple initial states.

Notice that for binary alphabets the last condition is equivalent to the fact that L is accepted
by a ROWJFA with multiple initial states.

References
[1] S. BEIER, M. HOLZER, Properties of Right One-Way Jumping Finite Automata. In: S. KONSTAN-

TINIDIS, G. PIGHIZZINI (eds.), Proceedings of the 20th International Workshop on Descriptional
Complexity of Formal Systems. Number 10952 in LNCS, Springer, Halifax, Nova Scotia, Canada,
2018, 11–23.

[2] S. BEIER, M. HOLZER, Semi-Linear Lattices and Right One-Way Jumping Finite Automata. IFIG
Research Report 1901, Institut für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-
35392 Gießen, Germany, 2019.

[3] S. BEIER, M. HOLZER, Semi-Linear Lattices and Right One-Way Jumping Finite Automata (Ex-
tended Abstract). In: M. HOSPODÁR, G. JIRÁSKOVÁ (eds.), Proceedings of the 24th International
Conference on Implementation and Application of Automata. LNCS, Springer, Košice, Slovakia,
2019, 70–82.

[4] H. CHIGAHARA, S. FAZEKAS, A. YAMAMURA, One-Way Jumping Finite Automata. Internat. J.
Found. Comput. Sci. 27 (2016), 391–405.

[5] S. GINSBURG, E. H. SPANIER, Bounded ALGOL-like languages. Trans. AMS 113 (1964), 333–368.

[6] S. GINSBURG, E. H. SPANIER, Bounded Regular Sets. Proc. Amer. Math. Soc. 17 (1966), 1043–
1049.

[7] M. O. RABIN, D. SCOTT, Finite Automata and Their Decision Problems. IBM Journal of Research
and Development 3 (1959), 114–125.

THEORIE-TAG 2019
S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019

Universität Bremen, Technischer Bericht der AG Datenbanken, S. 7–7.

Tree Substitution Grammars
Andreas Maletti

Fakultät für Mathematik und Informatik, Universität Leipzig
PO box 100 920, 04009 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Abstract

We report work-in-progress on the expressive power of tree substitution grammars,
which are popular grammar mechanisms in the area of parsing of natural languages. A
tree substitution grammar is essentially a finite set of tree fragments together with a set of
initial labels. Fragments with root label σ can be attached to any tree with a leaf labeled σ
by replacing the leaf directly by the whole fragment. Repeated replacements starting from
a leaf labeled with an initial label yield the trees generated by the grammar and a tree
language is a tree substitution language if there exists a tree substitution grammar, which
generates it. It is well known that each local tree language is a tree substitution language
and in turn each tree substitution language is regular.

In this contribution we show that tree substitution languages enjoy none of the standard
Boolean closures, but at least all finite and co-finite tree languages are tree substitution
languages. In addition, we report on progress on the characterization of tree substitution
languages inside the regular tree languages.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

8–10.

Average Case Analysis
of Leaf-Centric Binary Tree Sources

Louisa Seelbach Benkner(A) Markus Lohrey(A)

(A)University of Siegen
Department of Electrical Engineering and Computer Science

{seelbach, lohrey}@eti.uni-siegen.de

Abstract

We study the average size of the minimal directed acyclic graph (DAG) with respect to
so-called leaf-centric binary tree sources as studied by Zhang, Yang, and Kieffer in [12].
A leaf-centric binary tree source induces for every n ≥ 2 a probability distribution on all
binary trees with n leaves. We generalize a result shown by Flajolet, Gourdon, Martinez
[6] and Devroye [5] according to which the average size of the minimal DAG of a binary
tree that is produced by the binary search tree model is Θ(n/ logn), and a result shown by
Flajolet, Sipala and Steyaert [7], according to which the average size of the minimal DAG
of a binary tree with respect to the uniform probability distribution on all trees of size n is
O(n/√logn).

Introduction
One of the most important and widely used compression methods for trees is to represent a
tree by its minimal directed acyclic graph, shortly referred to as minimal DAG. The minimal
DAG of a tree t is obtained by keeping for each subtree s of t only one isomorphic copy of
s to which all edges leading to roots of s-copies are redirected. DAGs found applications in
numerous areas of computer science; let us mention compiler construction [1, Chapter 6.1 and
8.5], unification [10], XML compression and querying [4, 8], and symbolic model-checking
(binary decision diagrams) [3].

We consider the problem of derving asymptotic estimates for the average size of the minimal
DAG of a randomly chosen binary tree of size n. So far, this problem has been analyzed mainly
for two particular distributions: In [7], Flajolet, Sipala and Steyaert proved that the average
size of the minimal DAG with respect to the uniform distribution on all binary trees of size
n is asymptotically equal to c ·n/

√
lnn, where c is the constant 2

√
ln(4/π). This result was

extended to unranked and node-labelled trees in [2] (with a different constant c). An alternative
proof to the result of Flajolet et al. was presented in [11] by Ralaivaosaona and Wagner. For
the so-called binary search tree model, Flajolet, Gourdon and Martinez [6] and Devroye [5]
proved that the average size of the minimal DAG becomes Θ(n/ logn). In the binary search

(A)This work has been supported by the DFG research project LO 748/10-1 (QUANT-KOMP)

Average Case Analysis of Leaf-Centric Binary Tree Sources 9

tree model, a binary search tree of size n is built by inserting the keys 1, . . . ,n according to a
uniformly chosen random permutation on 1, . . . ,n.

A general concept to produce probability distributions on the set of binary trees of size n
was introduced by Zhang, Yang, and Kieffer in [12] (see also [9]), where the authors introduce
so-called leaf-centric binary tree sources. This yields a general framework for studying the
average size of a minimal DAG. Both the uniform distribution on all trees with n leaves and the
binary search tree model can be modeled as a leaf-centric binary tree source.

We generalize the results of [5, 6] and [7] on the average size of the minimal DAG with
respect to the binary search tree model, respectively, the uniform distribution, by considering
several classes of leaf-centric binary tree sources, for which we obtain asymptotic bounds for
the average size of the minimal DAG.

References
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley series in computer science / World student series edition.
Addison-Wesley, 1986.

[2] Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML com-
pression via DAGs. Theory of Computing Systems, 57(4):1322–1371, 2015.

[3] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

[4] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In Johann Christoph Freytag et al., editors, Proceedings of the 29th Conference on Very
Large Data Bases (VLDB 2003), pages 141–152. Morgan Kaufmann, 2003.

[5] Luc Devroye. On the richness of the collection of subtrees in random binary search trees.
Inf. Process. Lett., 65(4):195–199, 1998.

[6] Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary
search trees. Random Struct. Algorithms, 11(3):223–244, 1997.

[7] Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the com-
mon subexpression problem. In Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP 1990), volume 443 of Lecture Notes in
Computer Science, pages 220–234. Springer, 1990.

[8] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science (LICS’2003), pages 188–197. IEEE Computer Society Press, 2003.

[9] John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity of ran-
dom binary trees. In IEEE International Symposium on Information Theory, ISIT 2009,
pages 635–639. IEEE, 2009.

Average Case Analysis of Leaf-Centric Binary Tree Sources 10

[10] Mike Paterson and Mark N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

[11] Dimbinaina Ralaivaosaona and Stephan G. Wagner. Repeated fringe subtrees in random
rooted trees. In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Com-
binatorics, ANALCO 2015, pages 78–88. SIAM, 2015.

[12] Jie Zhang, En-Hui Yang, and John C. Kieffer. A universal grammar-based code for lossless
compression of binary trees. IEEE Transactions on Information Theory, 60(3):1373–1386,
2014.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

11–15.

Generating Hypergraph Languages by
(Context-dependent) Fusion Grammars and

Splitting/Fusion Grammars
Hans-Jörg Kreowski Sabine Kuske Aaron Lye

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany
{kreo,kuske,lye}@informatik.uni-bremen.de

Extended Abstract
Fusion grammars, context-dependent fusion grammars and splitting/fusion grammars were re-
cently introduced as devices for the generation of hypergraph languages (see [?, ?, ?]). They
are inspired by basic operations of DNA computing (cf, e.g., [?]). A fusion grammar provides
a start hypergraph and a finite set of fusion labels (besides some markers and terminals). The
fusion labels have complements and serve as rules. A fusion is defined by choosing two com-
plementarily labeled hyperedges, removing them and merging the corresponding attachment
vertices. Given a hypergraph, the set of all possible fusions is finite as fusions never create
anything. To overcome this limitation, we allow arbitrary multiplications of connected compo-
nents, i.e., connected subhypergraphs of maximal size, within derivations in addition to fusion.
A useful generalization is the restriction of fusions by positive and negative context-conditions.
Splitting is the inverse operation to fusion, i.e., a sequence of vertices is chosen, each of these
may be split in two vertices and two complementarily labeled hyperedges are attached. In this
presentation, we survey the very first results on these grammars.

Let Σ be a finite alphabet. A hypergraph over Σ is a systemH = (V,E,att, lab) where V is a
finite set of vertices,E is a finite set of hyperedges, att : E→ V ∗ is a function, called attachment
(assigning a string of attachment vertices to each edge), and lab : E → Σ is a function, called
labeling. If some label x ∈ Σ has got a type k(x), then the length of the attachment of each
hyperedge labeled with x has length k(x). HΣ denotes the set of all hypergraphs labeled over Σ.

A fusion grammar is a system FG = (Z,F,M,T) where Z is a finite start hypergraph and
F,M and T are pairwise-disjoint subalphabets of Σ. Their elements are called fusion labels,
markers, and terminals, respectively. Each A ∈ F has a type k(A) ∈ N and a complement
A of the same type. A ∈ F represents a fusion rule fr(A) which is applied to H ∈ HΣ by
(1) choosing two complementarily labeled hyperedges, (2) removing them, and (3) merging the
corresponding attachment vertices yielding the hypergraph H ′:

A
1

k(A)

. . . A . . .
1

k(A)

=⇒
fr(A)

.

Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and
Splitting/Fusion Grammars 12

•

•

•

•

µW

S

E

N

(a) CHECK

N

S

N

S

N

S

N

S

W E

W E

W E

N N

W

S

E

W E

S

W

S

E

N

W

W

E

E

N

S

N

S

S
N

(b) derived graph

(c) torus (d) Klein bottle

Figure 1:: Pseudotori

This is denoted by H=⇒
fr(A)

H ′. Besides such a rule application, a direct derivation may be a

multiplication H=⇒
m
m ·H for some multiplicity m which assigns a non-negative integer to

each connected component C of H . The result m ·H consists of the disjoint union of m(C)

copies of C for each connected component C of H . A derivation H n
=⇒H ′ of length n is a

sequence H0=⇒H1=⇒ . . .=⇒Hn with H =H0 and H ′ =Hn including the case n= 0. One
may write H ∗

=⇒H ′ for arbitrary n. The generated language of FG is L(FG) = {remM (H) |
Z
∗

=⇒H,H ∈ HT∪M −HT ,H connected} where remM (H) is the hypergraph obtained when
removing all hyperedges with labels in M .

Example Consider the set {N,W,S,E} and let F = {N,W}with k(N)= k(W)= 1 andN =
S,W =E. Then the fusion grammar PSEUDOTORI =(CHECK,F,{µ},{∗}) with CHECK de-
picted in Fig. 1a generates graphs of structures related to tori and Klein bottles, as the following
reasoning indicates.

Starting with a multiplication by – say – 20, the fusion of disjoint components only yields
grid structures like the ones depicted in Fig. 1b where the markers and loops are omitted. If one
continues now with fusions within connected components as long as possible, then one gets the
resulting connected components as members of the generated language. Consider particularly
the first connected component in Fig. 1b. If one fuses the vertices with W - and E-loops from
top to bottom and the vertices with N - and S-loops from left to right, then one gets a torus
(Fig. 1c, for simplicity the checks are replaced by rectangles). If one fuses the vertices with W -
and E-loops in opposite order, then one gets a Moebius strip. The further fusion of the vertices
with N - and S-loops from left to right yields the Klein bottle (Fig. 1d). All other terminal
structures where the fusion is done in arbitrary order result in something between torus and
Klein bottle. Hence we call them pseudotori.

Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and
Splitting/Fusion Grammars 13

•
•

•

A
2

1

k(A) =⇒
r

•
•

•

R

(a) application of a hyperedge replacement rule r

RA

•
•

•

2
1

k(A)

(b) fusion component of the rule r

Figure 2:: Components in the proof of Theorem 1

Fusion grammars are closely related to hyperedge replacement grammars [?, ?]. A hyper-
edge replacement grammar is a system HRG = (N,T,P,S) where N and T are disjoint subal-
phabets of Σ (elements in N and T are called nonterminals and terminals, respectively), S ∈N
is the start symbol of type 0, and P is a finite set of rules where a rule is a triple r = (A,R,ext)
with A ∈N,R ∈HΣ, and ext is a sequence of k(A) vertices of R. To apply r to some H ∈HΣ,
one chooses an A-hyperedge of H , replaces it by R, and merges corresponding attachment ver-
tices and the ext-vertices as depicted in Fig. 2a. The language generated by HRG contains all
terminal hypergraphs that can be derived from an S-labeled hyperedge by a sequence of rule
applications. It is easy to see that a hyperedge replacement can be obtained by a fusion of the
replaced hyperedge and the replacing right-hand side of the applied rule if one adds a hyperedge
with complementary label to the right-hand side with ext as attachment as depicted in Fig. 2b.
This observation leads to the following result shown in [?].

Theorem 1 Let HRG be a hyperedge replacement grammar with connected right-hand sides
of rules and FG(HRG) be the corresponding fusion grammar. Then L(HRG) = L(FG(HRG)).

The converse does not hold. While the graph languages generated by hyperedge replacement
grammars have bounded tree width, the set of square grids has unbounded tree width (cf. [?])
and consequently the set of pseudotori, too. This proves the following theorem.

Theorem 2 Fusion grammars are more powerful than hyperedge replacement grammars.

Context-dependent fusion grammars were introduced in [?] to simulate Petri nets. A context-
dependent fusion rule is a triple (A,PC,NC) where A is a fusion symbol and PC,NC are –
slightly sloppily seen – two sets of hypergraphs, called positive and negative context conditions,
respectively. Such a rule is applicable like fr(A), but only if both the positive and negative con-
text conditions hold in the usual way of context conditions (adapted to hypergraphs). A context-
dependent fusion grammar extends a fusion grammar by a finite set of context-dependent fusion
rules. A derivation step is either a context-dependent fusion rule application or a multiplication.
The generated language is defined as for ordinary fusion grammars.

In [?] it is shown that Turing machines can be simulated by context-dependent fusion gram-
mars. The construction works roughly as follows: (1) A Turing machine is represented by the
usual state graph, (2) the tape is represented by a sequence of successive edges each labeled

Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and
Splitting/Fusion Grammars 14

with symbols of the working alphabet, (3) the state graph and the tape are connected by a hy-
peredge that is attached to the current position on the tape and indicates the current state, (4) in
addition, the start hypergraph contains components that allow to generate the initial tape in a
terminal and a fusion version, and (5) components that allow to simulate a transition step of the
Turing machine by a sequence of applications of context-dependent fusion rules. Finally, there
is a terminating component that allows to disconnect the terminal tape with the input string from
the rest of the working hypergraph whenever an accepting state is reached. In other words, the
grammar generates a tape with an input string if and only if the Turing machine accepts this
string. This yields the following result.

Theorem 3 Let TM be a Turing machine and CDFG(TM) the corresponding context-dependent
fusion grammar. Then L(TM) and L(CDFG(TM)) coincide up to representation.

In [?] we defined the notion of splitting which is inverse to fusion, i.e., each of a chosen se-
quence of k vertices may be split into two vertices and equipped with a pair of complementarily
labeled hyperedges of type k, but using a splitting complement instead of the fusion comple-
ment. A splitting rule (here with fixed disjoint context) consists of a fusion label and a context
hypergraph. The application requires that the context becomes a disjoint component by splitting
equipped with the complementary hyperedge. A splitting/fusion grammar is a fusion grammar
extended by a finite set of splitting rules. A direct derivation is then either a fusion rule appli-
cation, a splitting rule application or a multiplication. The generated language is defined as in
the case of fusion grammars.

It can be shown that Chomsky grammars can be simulated by splitting/fusion grammars.
The construction works roughly as follows: (1) Strings are represented by sequences of succes-
sive edges labeled by the symbols in the string from left to right, and (2) the start hypergraph
consists of the graph of the initial string and the graphs of the right-hand sides of the Chomsky
rules equipped with an extra edge that is labeled with the complement of the rule considered as
fusion label. The splitting rules correspond to the Chomsky rules and have the left-hand sides
as contexts. A spitting wrt a Chomsky rule r followed by the fusion wrt to r has the same effect
on a string graph as the application of r to the string. This yields the following result.

Theorem 4 Let CG be a Chomsky grammar and SFG(CG) the corresponding splitting/fusion
grammar with rules restricted to fixed disjoint context. Then L(CG) and L(SFG(CG)) coincide
up to representation.

Moreover, we proved in [?] that connective hypergraph grammars can be simulated by these
kind of grammars.

Summarizing, fusion grammars have turned out to be more powerful than hyperedge re-
placement grammars and the generalizations to context-dependent fusion grammars and split-
ting/fusion grammars are both universal in the sense that they cover the class of recursively
enumerable languages. But the research on these type of hypergraph grammars is still in an
early stage of development, and there are many open problems including:

1. Are fusion grammars, as we assume, not universal? And if so, is the emptiness problem
or the membership problem or any other such problem decidable?

Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and
Splitting/Fusion Grammars 15

2. Are context-dependent fusion grammars restricted to either rules with positive context-
conditions or negative context conditions still universal?

3. Is there a natural transformation from context-dependent fusion grammars into split-
ting/fusion grammars or the other way round?

THEORIE-TAG 2019
S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019

Universität Bremen, Technischer Bericht der AG Datenbanken, S. 16–21.

Structural Sparsity
Sebastian Siebertz

University of Bremen

Abstract

Sparse graph classes, such as classes of bounded treewidth, classes of bounded expansion
and nowhere dense classes, have a rich structural and algorithmic theory. With the aim of
generalizing the theory to dense classes we study structurally sparse graph classes, which are
defined as appropriate transductions of sparse graph classes. In this talk we quickly review
the classical results from formal language and automata theory, which identify classes of
bounded cliquewidth as MSO-transductions of trees. We then discuss FO-transductions
of sparse graph classes and the connections with classical model theory, in particular with
stability theory.

1. MSO-transductions of trees
Logical transductions offer a powerful tool to translate results from one class of structures to
another. In this work we are particularly interested in structural graph theory, hence, we consider
only classes of finite graphs (finite structures over a relation with one binary relation symbol E
representing the edge relation). For our purposes it is sufficient to consider the following
restricted form of transductions.

Definition 1.1 A simple transduction T with m parameters is a formula ϕ(x,y,Z1, . . . ,Zm),
where x,y are two free first-order variables and Z1, . . . ,Zm are free set variables. For a graph G
and parameters P1, . . . ,Pm⊆ V (G), we define T(G,P1, . . . ,Pm) as the graph on vertex set V (G)
with edge set {{u,v} : G |= ϕ(u,v,P1, . . . ,Pm) or G |= ϕ(v,u,P1, . . . ,Pm),u,v ∈ V (G)}.

If ϕ is a formula of a logic L, then we speak of an L-transduction. In this work we will deal
with first-order logic (FO) and monadic second-order logic (MSO).

In general, one can consider more general transductions that allow to replace a structure A
by the union of a fixed number of disjoint copies of A, augmented with appropriate relations
between the copies, that define more general relations and restrictions of the universe. In model
theory one commonly studies interpretations that usually come without set parameters. Copy
operations can be simulated by interpretations in powers and by building quotients. We refer to
the literature for more background on structures, logic, transductions and interpretations [6, 13].

Definition 1.2 Let C and D be classes of graphs. We say that C is an L-transduction of D
if there exists an L-transduction T with m parameters for some m ∈ N such that for every
G ∈ C there exists H ∈ D and P1, . . . ,Pm ⊆ V (H) such that G is an induced subgraph of
T(H,P1, . . . ,Pm). We write C vL D if C is an L-transduction transduction of D .

Structural Sparsity 17

If graphs are replaced by their incidence graphs, MSO-formulas become more powerful,
because they can quantify over sets of edges. For each graph G we write Gin for the incidence
representation ofG, and for a class C of graphs we write Cin for the class containing all incidence
representations of graphs in C . We write C vin

L D if Cin vL Din. For n ∈ N we denote the class
of trees of height n by Tn, the class of paths by P , and the class of trees by T .

Theorem 1.3 (see e.g. [3, 5, 6]) Every class C of graphs in incidence representation can be
encoded by MSO-transductions in one of the following classes.

• If C satisfies C vin
MSO Tn for some n ∈ N, then C is called a class of bounded treedepth.

• If C satisfies C vin
MSO P , then C is called a class of bounded pathwidth.

• If C satisfies C vin
MSO T , then C is called a class of bounded treewidth.

• Every finite graph can be encoded in a sufficiently large finite square grid (by a fixed
transduction T).

When considering the standard encoding we obtain the following classification.

• If C satisfies C vMSO Tn for some n ∈N, then C is called a class of bounded shrubdepth.

• If C satisfies C vMSO P , then C is called a class of bounded linear cliquewidth.

• If C satisfies C vMSO T , then C is called a class of bounded cliquewidth.

We refer to the literature for background on the above defined graph theoretic concepts. For
those familiar with transductions, the above definitions may be even more convenient than the
definitions by tree models, tree decompositions and clique expressions.

Hence, from a logical point of view we can see the notions of shrubdepth, linear cliquewidth
and cliquewidth as dense analogues of treedepth, pathwidth and treewidth. These analogies can
also be seen from the graph theoretic point of view as follows. We call a class C of graphs
weakly sparse if and only if there is t ∈ N such that every G ∈ C excludes the complete bipartite
graph Kt,t as a subgraph.

Theorem 1.4 Let C be a weakly sparse graph class. Then

• C has bounded treedepth if and only if C has bounded shrubdepth [8].

• C has bounded pathwidth if and only if C has bounded linear cliquewidth [12].

• C has bounded treewidth if and only if C has bounded cliquewidth [12].

The power of MSO in transductions on trees is in fact only needed to define the least common
ancestor of two vertices. First-order logic can express only local properties and in particular in
general cannot find the least common ancestor of two vertices. For paths and general trees we
must change the representation to increase the power of FO accordingly. We write T ≤ for the
class of all trees represented by tree orders, i.e., by the relation u ≤ v if u is an ancestor of v,
and P≤ for the class of all linear orders.

Structural Sparsity 18

Theorem 1.5 Let C be a class of graphs.

• C has bounded treedepth if and only if C vin
FO Tn for some n ∈ N and it has bounded

shrubdepth if and only if C vFO Tn for some n ∈ N [9].

• C has bounded pathwidth if and only if C vin
FO P≤ and C has bounded linear cliquewidth

if and only if C vFO P≤ [4].

• C has bounded treewidth if and only if C vFO T ≤ and C has bounded cliquewidth if and
only if C vFO T ≤ [4].

This naturally raises the question about the expressive power of FO on paths and trees, or in
other words, on the role of order in the above classification. This question brings us to classical
model theory, in particular, to a branch of model theory called classification theory or stability
theory.

2. FO-transductions
Stability theory aims to classify first-order theories by their difficulty. One of the key dividing
lines between tame and wild theories is the ability of FO to define linear orders. Theories where
no large orders can be defined are called stable. In our graph theoretic context, the concept can
be defined as follows.

Definition 2.1 A class C of graphs is called stable if for every first-order formula ϕ(x̄, ȳ) there
exists an integer k such that for every graph G ∈ C and for all tuples ā1, . . . , ā` ∈ V (G)|x̄| and
b̄1, . . . , b̄` ∈ V (G)|ȳ|, if

G |= ϕ(āi, b̄j) ⇐⇒ i≤ j (1)

for all i, j ∈ [`], then `≤ k.

The combinatorial obstacle in this definition is called a halfgraph or ladder (of order `). From
a halfgraph we can define an order on tuples by G |= āib̄i < āj b̄j ⇔G |= ϕ(āi, b̄j)∧¬ϕ(āj , b̄i).

ā1

b̄1

ā2

b̄2

ā3

b̄3

ā4

b̄4

ā5

b̄5

Still reasonably behaved theories are dependent theories, which in our context are defined as
follows.

Definition 2.2 A class C of graphs is called dependent (or NIP) if for every first-order formula
ϕ(x̄, ȳ) there exists an integer k such that for every graph G ∈ C and for all tuples āi ∈ V (G)|x̄|

(i ∈ [`]) and, b̄I ∈ V (G)|y| (I ⊆ [`]), if

G |= ϕ(āi, b̄I) ⇐⇒ i ∈ I (2)

for all i ∈ [`] and all I ⊆ [`], then `≤ k.

Structural Sparsity 19

A stronger notion of stability and of dependence arises when one allows to apply monadic
lifts to the graphs in C before using the formula ϕ. These variants are called monadic stability
and monadic dependence. The additional expressive power gained by the introduction of a
monadic lift is so important that tuples of free variables can be replaced by single free variables
in the above definitions [2]. This fits exactly to our notion of transductions and we have the
following. We write H for the class of all halfgraphs and G for the class of all graphs.

Definition 2.3

• A class C of graphs is called monadically stable if and only if H 6vFO C .

• A class C of graphs is called monadically dependent if and only if G 6vFO C .

Prominent examples of monadically stable classes are nowhere dense graph classes and
classes of bounded expansion [1, 18, 19]. We refer to [17] for extensive background on these
graph classes. Classes of bounded cliquewidth are monadically dependent, see e.g. [11].

We recently obtained the following characterization of stable classes of bounded linear
cliquewidth, explaining the role of order in these graph classes. We say that a bipartite graph H
with partsA andB is semi-induced in a graphG, ifH is a subgraph ofG and the edges betweenA
and B in G are induced, that is, if for a ∈A and b ∈B we have {a,b} ∈E(H)⇔{a,b} ∈E(G).
We write Pn for the class of pathwidth at most n and T n for the class of treewidth at most n.

Theorem 2.4 ([15]) Let C be a class with bounded linear cliquewidth. Then the following are
equivalent.

• C is stable.

• C excludes some half-graph as semi-induced subgraph.

• C vFO Pn for some n ∈N, i.e., C is an FO-transduction of a class of bounded pathwidth.

This leads naturally to the following conjecture.

Conjecture 1 Let C be a class with bounded cliquewidth. Then the following are equivalent.

• C is stable.

• C excludes some half-graph as semi-induced subgraph.

• C vFO T n for some n ∈ N, i.e., C is an FO-transduction of a class of bounded treewidth.

We now turn to nowhere dense and bounded expansion classes. First, the weakly sparse
classes among the monadically dependent and stable classes are especially well behaved.

Theorem 2.5 ([15]) Let C be a weakly sparse graph class. Then the following are equivalent.

• C is monadically dependent.

• C is monadically stable.

• C is nowhere dense.

Structural Sparsity 20

Our main goal is to obtain a structural characterization of first-order transductions of nowhere
dense and bounded expansion classes. We say that these classes are structurally nowhere dense
and have structurally bounded expansion. Both are monadically stable. In particular, we are
interested in extending the model-checking results from these classes [7, 10] to their structurally
bounded counterparts. For classes with structurally bounded expansion we have obtained a nice
characterization in terms of covers (or colorings).

A p-cover, for p ∈ N, of a graph G is a family UG of subsets of V (G) such that if every
set of at most p elements of G is contained in some U ∈ UG . If C is a class of graphs, then
a p-cover of C is a family U = (UG)G∈C , where UG is a p-cover of G. A cover U is finite if
sup{|UA| : G ∈ C } is finite. Let C [U] denote the class of graphs {G[U] : G ∈ C ,U ∈ UG}.
If W is a class of graphs, we say that a cover U is a W -cover if C [U]⊆W .

Theorem 2.6 ([16]) A class C of graphs has bounded expansion if and only if

• for every p ∈ N there is a class Dp of bounded treedepth such that C admits a Dp-p-cover.

• for every p∈N there is a class Pp of bounded pathwidth such that C admits a Pp-p-cover.

• for every p∈N there is a class T p of bounded treewidth such that C admits a T n-p-cover.

With the above introduction the following will not come as a surprise.

Theorem 2.7 A monadically stable class C of graphs has structurally bounded expansion if
and only if

• for every p ∈ N there is a class Dp of bounded shrubdepth such that C admits a Dp-p-
cover [8].

• for every p ∈ N there is a class Pp of bounded linear cliquewidth such that C admits a
Pp-p-cover [15].

• Conjecture: for every p ∈ N there is a class T p of bounded cliquewidth such that C
admits a T p-p-cover.

We studied classes with bounded cliquewidth covers in [14].

3. Conclusion
While classes of bounded treedepth, pathwidth and treewidth, as well as classes of bounded
shrubdepth, linear cliquewidth and cliquewidth are very well understood as MSO-transductions
of bounded depth trees, paths and general trees, much less is known about FO-transductions of
sparse graph classes. The notions of FO-transductions fit very well into the framework of monadic
stability and monadic dependence that is studied in classical stability theory. Nevertheless, these
notions are usually studied in the context of infinite structures and we are only beginning to
develop a structural and algorithmic theory of finite graphs that have these properties. I hope that
with this short note I could wake the readers enthusiasm for the topic.

Structural Sparsity 21

References
[1] H. ADLER, I. ADLER, Interpreting nowhere dense graph classes as a classical notion of model theory.

European Journal of Combinatorics 36 (2014), 322–330.

[2] J. T. BALDWIN, S. SHELAH, Second-order quantifiers and the complexity of theories. Notre Dame Journal of
Formal Logic 26 (1985) 3, 229–303.

[3] A. BLUMENSATH, B. COURCELLE, On the Monadic Second-Order Transduction Hierarchy. Logical Methods
in Computer Science 6 (2010) 2.

[4] T. COLCOMBET, A combinatorial theorem for trees. In: International Colloquium on Automata, Languages,
and Programming. Springer, 2007, 901–912.

[5] B. COURCELLE, The monadic second-order logic of graphs VII: Graphs as relational structures. Theoretical
Computer Science 101 (1992) 1, 3–33.

[6] B. COURCELLE, J. ENGELFRIET, Graph structure and monadic second-order logic: a language-theoretic
approach. 138, Cambridge University Press, 2012.

[7] Z. DVOŘÁK, D. KRÁL’, R. THOMAS, Deciding First-Order Properties for Sparse Graphs. In: 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2010). 2010, 133–142.

[8] J. GAJARSKÝ, S. KREUTZER, J. NEŠETŘIL, P. OSSONA DE MENDEZ, M. PILIPCZUK, S. SIEBERTZ,
S. TORUŃCZYK, First-order interpretations of bounded expansion classes. In: 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 126:1–126:14.

[9] R. GANIAN, P. HLINĚNÝ, J. NEŠETŘIL, J. OBDRŽÁLEK, P. OSSONA DE MENDEZ, R. RAMADURAI, When
Trees Grow Low: Shrubs and Fast MSO1. In: International Symposium on Mathematical Foundations of
Computer Science. Lecture Notes in Computer Science 7464, Springer-Verlag, 2012, 419–430.

[10] M. GROHE, S. KREUTZER, S. SIEBERTZ, Deciding first-order properties of nowhere dense graphs. In:
Proceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM, 2014, 89–98.

[11] M. GROHE, G. TURÁN, Learnability and definability in trees and similar structures. Theory of Computing
Systems 37 (2004) 1, 193–220.

[12] F. GURSKI, E. WANKE, The Tree-Width of Clique-Width Bounded Graphs without Kn,n, Lecture Notes in
Computer Science 1928, Springer, 2000, 196–205.

[13] W. HODGES, H. WILFRID, et al., Model theory. 42, Cambridge University Press, 1993.

[14] O. KWON, M. PILIPCZUK, S. SIEBERTZ, On low rank-width colorings. In: Graph-theoretic concepts in
computer science. Lecture Notes in Comput. Sci. 10520, Springer, 2017, 372–385.

[15] J. NEŠETŘIL, P. O. DE MENDEZ, R. RABINOVICH, S. SIEBERTZ, Classes of graphs with low complexity:
the case of classes with bounded linear rankwidth. submitted (2019).

[16] J. NEŠETŘIL, P. OSSONA DE MENDEZ, Grad and Classes with Bounded Expansion I. Decompositions.
European Journal of Combinatorics 29 (2008) 3, 760–776.

[17] J. NEŠETŘIL, P. OSSONA DE MENDEZ, Sparsity (Graphs, Structures, and Algorithms). Algorithms and
Combinatorics 28, Springer, 2012. 465 pages.

[18] M. PILIPCZUK, S. SIEBERTZ, S. TORUŃCZYK, On the number of types in sparse graphs. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2018, 799–808.

[19] K.-P. PODEWSKI, M. ZIEGLER, Stable graphs. Fund. Math. 100 (1978), 101–107.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

22–22.

Balancing Straight-Line Programs
Moses Ganardi(A) Artur Jeż(B) Markus Lohrey(A)

(A)University of Siegen, Germany
{ganardi,lohrey}@eti.uni-siegen.de

(B)University of Wrocław, Poland
aje@cs.uni.wroc.pl

A straight-line program (SLP for short) is a context-free string grammar that produces exactly
one string. SLPs are widely used in the areas of data compression and algorithmics on compres-
sed data. The size of an SLP (usually measured as the sum of the lengths of all right-hand sides)
for a string s can be much smaller than the length of s. This happens in particular, if s contains
many repetitions of a pattern. String compression using SLPs is also tightly related to dictionary
based compression, in particular the well-known LZ77 and LZ78 compressors. Besides the size
of an SLP, also its depth is important. The depth of an SLP is the height of its derivation tree.
The running time or space consumption of many algorithms for SLPs depends on the depth of
the input SLP. Trivially, the depth of an SLP is upper bounded by its size. Moreover, an SLP
for a string of length n must have depth log(n). We prove that SLPs can be balanced in the
following sense: Given an SLP of size m for a string of length n one can compute in linear time
an equivalent SLP of size O(m) and depth O(logn). This improves a previous result of Rytter
(where the size of the SLP was O(m · logn)) and solves a long-standing open problem from the
area of grammar-based compression. If time permits, we will also discuss analogous balancing
results from the area of grammar-based tree compression.

A short version of this paper will appear in the Proceedings of FOCS 2019. A long version can
be found at https://arxiv.org/abs/1902.03568.

(A)Markus Lohrey has been supported by the DFG research project LO 748/10-1.
(B)Artur Jeż was supported under National Science Centre, Poland project number 2017/26/E/ST6/00191.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

23–23.

Decidability and Complexity of ALCOIF with
Transitive Closure

Jean Christoph Jung(A) Carsten Lutz(A) Thomas Zeume(B)

(A)Universität Bremen
{jeanjung,clu}@uni-bremen.de

(B)TU Dortmund
thomas.zeume@cs.tu-dortmund.de

Abstract

We study decidability and complexity of the description logicALCOIF extended with
transitive closure. In particular, we show decidability and NEXPTIME-completeness of fi-
nite and unrestricted satisfiability. Our results are interesting and relevant beyond the area
of description logics, for two reasons. First, the logic we study is a notational variant of
propositional dynamic logic (PDL) extended with converse, nominals, and deterministic
programs, subject to the restriction that programs of the form α∗ contain either no deter-
ministic program or only a single atomic program (and possibly its converse). It is worth
mentioning that the decidability of the logic without the latter restriction is still open, and
that the µ-calculus with the same three extensions is undecidable. The second interest-
ing perspective is provided by the fact thatALCOIF is an expressive fragment of C2, two
variable first-order logic with counting quantifiers, and in fact even of the guarded fragment
GC2 thereof. It is known thatGC2 easily becomes undecidable when (an unrestricted num-
ber of) relations can be declared to have special semantic properties such as being a linear
order, a transitive relation, or an equivalence relation. In some cases, decidability can be
attained when only a limited number of special relations is admitted. In the logic studied
in this paper, it is possible to express that a role is transitive, an equivalence relation, a
linear order, or a forest, respectively, possibly using auxiliary symbols. Thus, our results
show that (finite) satisfiability of ALCOIF remains decidable when we admit that an un-
bounded number of relations is declared to have any of the mentioned semantic properties,
in marked contrast to C2 and GC2. In fact, they raise the question for a maximal logic with
this property.

This paper has been presented at DL 2019.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

24–27.

Tissue P Systems with Anti-Cells
Artiom Alhazov(A) Rudolf Freund(B) Sergiu Ivanov(C)

(A)Institute of Mathematics and Computer Science
Academiei 5, Chişinău, MD-2028, Moldova

artiom@math.md
(B)TU Wien, Institut für Logic and Computation

Favoritenstraße 9–11, 1040 Wien, Austria
rudi@emcc.at

(C)IBISC, Université Évry, Université Paris-Saclay
23, boulevard de France, 91034 Évry, France

sergiu.ivanov@univ-evry.fr

Abstract
The concept of a matter object being annihilated when meeting its corresponding anti-

matter object is taken over for tissue P systems with cell division rules and cell / anti-cell
annihilation rules. As derivation modes we may take any of the maximally parallel deriva-
tion modes as well as any of the maximal set derivation modes (non-extendable (multi)set
of rules, (multi)set with maximal number of rules, (multi)set of rules affecting the maximal
number of objects).

1. Introduction
For an introduction to the field of P systems we refer to the monograph [2] and the handbook
of membrane systems [3]; for actual news and results we refer to the P systems webpage [4] as
well as to the Bulletin of the International Membrane Computing Society.

In [1], the concept of anti-matter was introduced: for any object a (matter), its anti-object
(anti-matter) a− is considered together with the corresponding annihilation rule aa−→ λ. This
annihilation rule is assumed to be a special non-cooperative rule having priority over all other
rules in the sense of weak priority i.e., other rules then also may be applied if objects cannot be
bound by some annihilation rule any more.

Natural numbers can be represented by the corresponding number of cells with a specific
label in a tissue P system. Hence, in this paper we take over the idea of anti-objects for cells, i.e.,
for every cell #h we take the anti-cell #h− and the cell / anti-cell annihilation rule #h#h−→ λ.
In the simplest case, we only use cell division, i.e., rules of the form #h→#h′#h′′ , possibly also
allowing cell renaming rules of the form #h→#h′ and cell deletion rules of the form #h→ λ.

Natural numbers can be represented by the corresponding number of cells with a specific
label. In this setting, computational completeness results can be obtained for tissue P systems
with cell division rules and cell / anti-cell annihilation rules only. As derivation modes we may
take any of the maximally parallel derivation modes as well as any of the maximally parallel set
derivation modes.

Tissue P Systems with Anti-Cells 25

2. Tissue P Systems with Cell Division and Anti-Cells
Only the following types of rules for cells in the tissue P system are used:
cell division #h→#h′#h′′: the cell #h is divided into two cells, possibly changing the label

h of the parent cell #h to two new labels h′,h′′ for the child cells #h′ and #h′′

changing cell label #h→#h′: the label h of cell #h is changed to h’
cell deletion #h→ λ: the cell #h is deleted
cell / anti-cell #h#h−→ λ: the cell #h and its anti-cell #h− annihilate each other

We may use any of the following derivation modes:
max take a non-extendable multiset of rules
maxrules take a non-extendable multiset of rules with the maximal number of rules possible
maxobjects take a non-extendable multiset of rules affecting the maximal number of objects
setmax take a non-extendable set of rules
setmaxrules take a non-extendable set of rules with the maximal number of rules possible
setmaxobjects take a non-extendable set of rules affecting the maximal number of objects

Formally, a tissue P system with anti-cells (a tPAC for short) is a construct Π = (H,w0,R)
where H is the set of cell labels used in the rules specified in R, w0 is the initial set of cells
with labels from H , and R is the set of rules of the forms described above, with the labels of
the cells taken from H . In any computation step of Π a multiset or set of rules is chosen from
the set R in such a way that it is consistent with the derivation mode. We emphasize that we
assume cell / anti-cell annihilation rules to have weak priority over all other rules, i.e., as long
as cell / anti-cell annihilation rules may bind some cells, other rules are not allowed to yet be
taken into the multiset or set of rules constructed to be applied.

A configuration of the system can be represented by the currently existing cells. Starting
from a given initial configuration and applying evolution rules as described above in the given
derivation mode, we get transitions among configurations; a sequence of transitions forms a
computation. A computation is halting if it reaches a configuration where no rule can be ap-
plied any more. In the generative case, a halting computation has associated a result, in the
form of the number of cells present in the system; their numbers represents a vector of natu-
ral numbers. In the accepting case, all (vectors of) non-negative integers are accepted whose
input, given as the corresponding numbers of initial cells in addition to w0, leads to a halting
computation. The set of non-negative integers and the set of (Parikh) vectors of non-negative
integers generated/accepted as results of halting computations in Π using the derivation mode
γ are denoted by Nγ,δ(Π) and Psγ,δ(Π), respectively, with δ ∈ {gen,acc}. The correspond-
ing families of sets of non-negative integers and the sets of vectors of non-negative integers
generated/accepted by tPACs are denoted by Nγ,δ(tPAC) and Psγ,δ(tPAC), respectively.

3. Results
As a first result, we observe that rules changing a cell label, i.e., #h→#h′ , and cell deletion
rules, i.e., #h→ λ, are not needed and can be replaced by using only cell division and suitable
cell / cell annihilation rules.

Tissue P Systems with Anti-Cells 26

Lemma 3.1 Rules changing cell label, i.e., #h→#h′ , and cell deletion rules, i.e., #h→ λ, can
be simulated by cell division and cell / anti-cell annihilation rules.

Proof. A rule changing the cell label, i.e., #h→#h′ , can be simulated by the rules #h→#h′#h′′ ,
#h′′→#g#g− , and #g#g−→ λ, where h′′,g,g− are new labels.

A cell deletion rule, i.e., #h→ λ, can be simulated by the rules #h→#g#g− and #g#g−→
λ, where g,g− are new labels. 2

A tPAC only using cell division and cell / anti-cell annihilation rules is called a tPAC in
normal form. As an immediate consequence of Lemma 3.1 we obtain the following normal
form theorem:

Theorem 3.2 For every tPAC Π we can construct a tPAC Π′ in normal form such that Yγ,δ(Π)=
Yγ,δ(Π′) for any Y ∈ {N,Ps} and any δ ∈ {gen,acc} as well as any

γ ∈ {max,maxrules,maxobjects, setmax,setmaxrules, setmaxobjects}.

We now show that tPACs, even in normal form, characterize the families NRE and PsRE,
respectively. The main proof idea – as used very often in the area of P systems – is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for P systems with
anti-matter. The bracket notation [NF]tPACs indicates that the result holds for tPACs as well as
for tPACs in normal form:

Theorem 3.3 For any Y ∈ {N,Ps} and δ ∈ {gen,acc}, Yγ,δ([NF]tPAC) = Y RE for any

γ ∈ {max,maxrules,maxobjects, setmax,setmaxrules, setmaxobjects}.

Proof. Let M = (m,B,l0, lh,P) be a register machine, where m is the number of registers,
B is the set of instruction labels, l0 is the initial label, lh is the final label, and P is the set of
instructions. We now construct a tPAC Π which simulates (the computations of) M :

– Π = (H,w0,R);
– H =

{
r,r− | 1≤ r ≤m

}
∪{l, l′ | l ∈B}∪

{
#,#−

}
is the set of labels for the cells;

the label r,1≤ r ≤m, is for the copies of cell #r representing the contents of register r;
the labels r− are for the corresponding anti-cells;

– in the generating case, only the cell #l0 is present at the beginning; in the accepting case,
suitable copies of cells for representing the input vector are to be added;

– R contains the rules described in the following.
The contents of register r is represented by the number of copies of cells #r, 1 ≤ r ≤m,

and for each cell #r we also consider the corresponding anti-cell #r− .

The instructions of M are simulated by the following rules in R1:
• l1 : (ADD (j) , l2, l3), with l1 ∈B \{lh}, l2, l3 ∈B, 1≤ j ≤m.

Simulated by the rules #l1 →#r#l2 and #l1 →#r#l3 .
• l1 : (SUB (r) , l2, l3), with l1 ∈B \{lh}, l2, l3 ∈B, 1≤ r ≤m.

As rules common for the simulations of all SUB-instructions, we have
– #r− →##− , 1≤ r ≤m,
– the annihilation rules #r#r− → λ, 1≤ r ≤m, and ####− → λ,

Tissue P Systems with Anti-Cells 27

– as well as the trap rules ##−→#### and ##→####; these last two rules lead the
system into an infinite computation whenever a cell with one of the trap symbols #
or #− is left without being annihilated.

(a) The zero test for instruction l1 is simulated by the rules
#l1 → #l1

′ #r− and #l′1
→ ###l3 .

The cell labeled by #, generated by the second rule #l′1
→ ###l3 can only be

eliminated if the anti-cell #r− generated by the first rule #l1 → #l1
′ #r− is not

annihilated by #r, i.e., only if register r is empty, which allows us to apply the rule
#r− → ##− and then the annihilation rule ####− → λ.

(b) The decrement case for instruction l1 is simulated by the rule #l1 →#l2#r− .
The anti-cell #r− either correctly annihilates one copy of cell #r, thus decrement-
ing the register r, or else traps an incorrect guess by forcing the anti-cell #r− to
evolve to ##− and then to #### in the next two steps in case register r is empty.

We finally observe that these two remaining derivation steps for trapping the decrement
case as well as the remaining derivation step for correctly completing the decrement case
or the zero test case do not influence the correct simulation of another SUB-instruction,
even on the same register r, as the involved symbols have evolved at least one step before
they could influence the symbols being generated by the new simulation sequence.
• lh : HALT . Simulated by #lh → λ.
When the computation in M halts, the cell #lh is removed, and no further rules can be

applied provided the simulation has been carried out correctly, i.e., if no cells labeled by trap
symbols # are present in this situation. The remaining cells in the system represent the result
computed by M .

Using Lemma 3.1 we can even transform the tPAC constructed above in a tPAC in normal
form. We finally observe that throughout the proof the rules used in the simulations of register
machine instructions need only be used once in each derivation step, so the construction works
for the set modes, too. 2

Finally we mention that computational completeness can also be extended from the gener-
ating and accepting case to the computing case, i.e., and tPAC, even in normal form, can also
compute any partial recursive function or relation.

References
[1] A. ALHAZOV, B. AMAN, R. FREUND, P Systems with Anti-Matter. In: M. GHEORGHE,

G. ROZENBERG, A. SALOMAA, P. SOSÍK, C. ZANDRON (eds.), Membrane Computing - 15th In-
ternational Conference, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Selected
Papers. Lecture Notes in Computer Science 8961, Springer, 2014, 66–85.

[2] GH. PĂUN, Membrane Computing: An Introduction. Springer, 2002.

[3] GH. PĂUN, G. ROZENBERG, A. SALOMAA (eds.), The Oxford Handbook of Membrane Computing.
Oxford University Press, 2010.

[4] The P Systems Website. http://ppage.psystems.eu/.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

28–31.

Accepting Networks of Evolutionary Processors with
Resources Restricted Filters

Bianca Truthe

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
bianca.truthe@informatik.uni-giessen.de

Abstract

In this paper, we continue the research on accepting networks of evolutionary proces-
sors where the filters belong to several special families of regular languages. These sub-
regular families are defined by restricting the resources needed for generating or accepting
them (the number of states of the minimal deterministic finite automaton accepting a lan-
guage of the family as well as the number of non-terminal symbols or the number of pro-
duction rules of a right-linear grammar generating such a language). We insert the newly
defined language families into the hierachy of language families obtained by using as filters
languages of other subregular families (such as ordered, non-counting, power-separating,
circular, suffix-closed regular, union-free, definite, combinational, finite, monoidal, nilpo-
tent, or commutative languages).

1. Introduction
Networks of language processors have been introduced in [2] by E. CSUHAJ-VARJÚ and A. SA-
LOMAA. Such a network can be considered as a graph where the nodes represent processors
which apply production rules to the words they contain. In a derivation step (an evolutionary
step), any node derives from its language all possible words as its new language. In a com-
munication step, any node sends those words to other nodes which satisfy an output condition
given as a regular language (called the output filter) and any node adopts words sent by the other
nodes if the words satisfy an input condition also given by a regular language (called the input
filter).

Inspired by biological processes, in [1] a special type of networks of language processors
was introduced. The nodes of such networks are called evolutionary processors because the
allowed productions model the point mutation known from biology. The productions of a node
allow that one letter is substituted by another letter, letters are inserted, or letters are deleted;
the nodes are then called substitution nodes, insertion nodes, or deletion nodes, respectively.

Networks of evolutionary processors can be defined as language generating devices (the
processors start working with finite sets of axioms and all words which are in a designated pro-
cessor at some time form the generated language) and accepting ones (input words are accepted
if there is a computation which leads to a word in a designated processor).

This is a short version of a paper presented at NCMA 2019 in Valencia (Spain) [4].

Accepting Networks of Evolutionary Processors with Resources Restricted Filters 29

In [3], the computational power of accepting networks of evolutionary processors was inves-
tigated for cases that all filters belong to a certain subfamily of the set of all regular languages.

In [4], the research on accepting networks of evolutionary processors was continued where
the filters are restricted by bounded resources, namely the number of non-terminal symbols or
the number of production rules which are necessary for generating the languages or the number
of states which are necessary for accepting the languages by deterministic finite automata. The
language classes obtained by these restrictions are compared to those obtained in [3].

2. Preliminaries
Here, we explain accepting networks of evolutionary processors (ANEPs) and present the lan-
guage families which are considered for the filters. Let V be an alphabet. By V ∗ we denote the
set of all words over the alphabet V (including the empty word λ).

Intuitively, an accepting network over an alphabet V with n evolutionary processors is a
graph consisting of n nodes (also called processors) and a set of directed edges between nodes.
One of the nodes is the input node, one is the output node of the network. Any processor Ni

with 1≤ i≤ n consists of a setMi of evolutionary rules, an input filter Ii, and an output filterOi.
We say that Ni is

– a substitution node if Mi ⊆ {a→ b | a,b ∈ V } (by any rule, a letter is substituted by
another one),

– a deletion node if Mi ⊆ {a→ λ | a ∈ V } (by any rule, a letter is deleted), or
– an insertion node if Mi ⊆ {λ→ b | b ∈ V } (by any rule, a letter is inserted).

Every node has rules from one type only. The input filter Ii and the output filter Oi control
the words which are allowed to enter and to leave the node, respectively. With any node Ni

and any time moment t ≥ 0, we associate a set Ct(i) of words (the words contained in the
node at time t). Initially, the input node Nni contains the one word (the input word); the other
nodes have no words. In an evolutionary step, we derive from Ct(i) all words by applying
rules from the set Mi. In a communication step, any processor Ni sends out all words from the
setCt(i)∩Oi (which pass the output filter) to all processors to which a directed edge exists (only
the words from Ct(i)\Oi remain in the set associated with Ni) and, moreover, it receives from
any processor Nk such that there is an edge from Nk to Ni all words sent by Nk and passing the
input filter Ii of Ni, i. e., the processor Ni gets in addition all words of Ct(k)∩Ok ∩ Ii. We start
with an evolutionary step and then communication steps and evolutionary steps are alternately
performed. If, at some moment t with t ≥ 0, the output node contains a word, then the input
word is accepted. The accepted language is the set of all input words which are accepted by the
network.

For a family X , we denote the family of languages accepted by networks of evolutionary
processors where all filters are of type X by A(X).

In this paper, we consider filters which are defined by bounding the resources which are
necessary for accepting or generating these languages. By RLV

n , RLP
n , and REGZ

n , we denote
the family of all languages which are generated by a right-linear grammar with at most n non-
terminal symbols or production rules or accepted by a deterministic finite automaton with at
most n states, respectively.

Accepting Networks of Evolutionary Processors with Resources Restricted Filters 30

In [3], the following restrictions for regular languages are considered. In order to relate our
results of this paper to the results there, we explain here those special regular languages. Let L
be a language and V the minimal alphabet of L. We say that the language L, with respect to the
alphabet V , is

– monoidal if L= V ∗,
– combinational if it has the form L= V ∗A for some subset A⊆ V ,
– definite if it can be represented in the form L=A∪V ∗B whereA andB are finite subsets

of V ∗,
– nilpotent if L is finite or V ∗ \L is finite,
– commutative if L= { ai1 . . .ain | a1 . . .an ∈ L, n≥ 1, {i1, i2, . . . , in}= {1,2, . . . ,n} },
– circular if L= { vu | uv ∈ L, u,v ∈ V ∗ },
– suffix-closed if the relation xy ∈ L for some words x,y ∈ V ∗ implies that also the suffix y

belongs to L or equivalently, L= { v | uv ∈ L, u,v ∈ V ∗ },
– non-counting (or star-free) if there is an integer k ≥ 1 such that, for any x,y,z ∈ V ∗, the

relation xykz ∈ L holds if and only if also xyk+1z ∈ L holds,
– power-separating if for any word x ∈ V ∗ there is a natural number m≥ 1 such that either

the equality Jm
x ∩L= ∅ or the inclusion Jm

x ⊆ L holds where Jm
x = {xn | n≥m},

– ordered if L is accepted by some finite automaton A = (Z,V,δ,z0,F) where (Z,�) is a
totally ordered set and, for any a ∈ V , z � z′ implies δ(z,a)� δ(z′,a),

– union-free if L can be described by a regular expression which is only built by product
and star.

Among the commutative, circular, suffix-closed, non-counting, and power-separating lan-
guages, we consider only those which are also regular.

By FIN, MON, COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF, we denote
the families of all finite, monoidal, combinational, definite, nilpotent, regular commutative,
regular circular, regular suffix-closed, regular non-counting, regular power-separating, ordered,
and union-free languages, respectively. Furthermore, REG and RE denote the families of all
regular and all recursively enumerable languages, respectively.

The following theorem is known (see, e. g., [3]).

Theorem 2.1 We have A(REG) = RE.

3. Summary of the Results
Accepting networks of evolutionary processors are investigated where the filters belong to sub-
regular language families which are defined by restricting the resources needed for generating
or accepting them (the number of states of the minimal deterministic finite automaton accepting
a language of the family, the number of non-terminal symbols, or the number of production
rules of a right-linear grammar generating such a language). These language families are in-
serted into the hierachy of language families obtained by using languages of other subregular
families as filters (such as ordered, non-counting, power-separating, circular, suffix-closed reg-
ular, unionfree, definite, combinational, finite, monoidal, nilpotent, or commutative languages)
which was published in [3]. The hierarchy with the new results is shown in Figure 1.

Accepting Networks of Evolutionary Processors with Resources Restricted Filters 31

RE =A(REG) =A(PS) =A(NC) =A(ORD)
=A(DEF) =A(UF) =A(SUF)
=A(COMB) =A(RLV

i)i≥1 =A(REGZ
i)i≥2

A(NIL)

A(FIN)

A(RLP
n)

...

A(RLP
2)

A(RLP
1)

A(CIRC)

A(MON) =A(COMM)
=A(REGZ

1)

Figure 1: Hierarchy of language families by ANEPs with filters from subregular families. An arrow from
a language family X to a language family Y stands for the proper inclusion X ⊂ Y . If two families X
and Y are not connected by a directed path, then the families are incomparable.

References
[1] J. CASTELLANOS, C. MARTÍN-VIDE, V. MITRANA, J. M. SEMPERE, Solving NP-Complete Prob-

lems with Networks of Evolutionary Processors. In: IWANN ’01: Proceedings of the 6th Interna-
tional Work-Conference on Artificial and Natural Neural Networks. LNCS 2084, Springer-Verlag
Berlin, 2001, 621–628.

[2] E. CSUHAJ-VARJÚ, A. SALOMAA, Networks of Parallel Language Processors. In: New Trends
in Formal Languages – Control, Cooperation, and Combinatorics. LNCS 1218, Springer-Verlag
Berlin, 1997, 299–318.

[3] F. MANEA, B. TRUTHE, Accepting networks of evolutionary processors with subregular filters.
Theory of Computing Systems 55 (2014) 1, 84–109.

[4] B. TRUTHE, Accepting Networks of Evolutionary Processors with Resources Restricted Filters. In:
R. FREUND, M. HOLZER, J. M. SEMPERE (eds.), 11th Workshop on Non-Classical Models of
Automata and Applications (NCMA), Valencia, Spain, July 2–3, 2019, Proceedings. books@ocg.at
336, Österreichische Computer Gesellschaft, Austria, 2019, 187–202.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

32–35.

How are Eulerian trails connected to formal
languages?

Meenakshi Paramasivan

Institut für Informatik, Universität Leipzig, D-04009 Leipzig, Germany
meena_maths@yahoo.com

Abstract

Some detailed proofs of few theorems in [1] and some additional results are given in [2].

1. Introduction and Definitions
We consider connected graphs. If we draw all the vertices of a graph G = (V,E,ψ) on a
horizontal line, then we associate different integers to the vertices by a function called pseudo-
linear drawing, which is defined as follows:

Definition 1.1 A pseudo-linear drawing (PLD) is an injective function φ : V → Z.

Definition 1.2 PLDφ(G) is a graph with vertex set φ(V) such that PLDφ(G) ∼=G.

Definition 1.3 If φ is a PLD, then u is to the left of v in the drawing PLDφ(G) if and only if
φ(u)< φ(v). Similarly u is to the right of v in the drawing PLDφ(G) if and only if φ(v)< φ(u).

v1

v2

v0

e1e2

e0

G: 1000 2000100
PLDφ(G):

Figure 1: Graph G and PLDφ(G) in Example 1.4

Example 1.4 Let G be graph as in Fig. 1 and let φ be a PLD defined as φ(v0) = 100, φ(v1) =
1000 and φ(v2) = 2000 then PLDφ(G) is as in Fig. 1.

The word representation of the Eulerian trails is as follows:

How are Eulerian trails connected to formal languages? 33

Definition 1.5 A connected graph G = (V,E,ψ), with an Eulerian trail W = v0e0 . . . ek−1vk
and any PLD φ : V → Z, defines a word w = word(G,φ,W) ∈ Σ∗, Σ = {→,←, |} associated
to G, φ and W as follows:

word(G,φ,W) =





ε if W = v0

w′w′′,w′′ =→ |s if s= φ(vk)−φ(vk−1)≥ 0∧W 6= v0

w′w′′,w′′ =← |s if s= φ(vk−1)−φ(vk)> 0∧W 6= v0

Here w′ = word(G′,φ′,W ′), where W ′ = v0e0 . . . ek−2vk−1, G′ (G,

G′ =

{
G− ek−1 if dG(vk)> 1
G−vk if dG(vk) = 1

with V (G′) = V ′ = V if G′ =G−ek−1 and V ′ = V −vk if G′ =G−vk, E(G′) = E′ (E,
ψ′ is the restriction of ψ to E′ and φ′ the restriction of φ to V ′.

Note 1: In the above definition the trail W satisfies W =W ′ ·vk−1 W
′′ where `(W ′) = k− 1,

and W ′′ = vk−1ek−1vk where `(W ′′) = 1 to satisfy `(W) = k.

Note 2: W ′′ = vk−1ek−1vk is an Eulerian trail of the graph G′′ = (V ′′,E′′,ψ′′), where V ′′ =
{vk,vk−1},E′′= {ek−1}, ψ′′(ek−1) = vk−1vk. ThenG′′ satisfies the condition thatG=G′∪G′′
with vk−1 ∈ V ′ ∩V ′′. Here G′ and G′′ are edge-disjoint but not vertex-disjoint. Also G′′ has
a PLD φ′′, the restriction of φ to V ′′, that is φ′′ = φ|V ′′ . So we have word(G′′,φ′′,W ′′) = w′′.
This gives the following remark.

Remark 1.6 word(G,φ,W) = word(G′,φ′,W ′) ·word(G′′,φ′′,W ′′).
Hence, G,φ, and an Eulerian trailW inG specify a word word(G,φ, W) =w over the alphabet
Σ = {→,←, |}, called Eulerian trace. This gives the following formal definition of the set of all
Eulerian traces.

Definition 1.7 ET = {w ∈ {→,←, |}∗ | ∃G= (V,E,ψ) with an Eulerian trail W and ∃ a PLD
φ : V → Z such that w = word(G,φ,W)}.

2. Results
Lemma 2.1 ET ⊆ Σ∗ \ (({|}Σ∗)∪{←}), where Σ = {→,←, |}.

Lemma 2.2 Let W1 and W2 be two Eulerian trails of graphs G1 = (V1,E1,ψ1) and G2 =
(V2,E2,ψ2) respectively. Then W1 ·vk W2 is also an Eulerian trail of graph G1∪G2 with vk ∈
V1∩V2 and vk being the terminus of W1 and origin of W2.

Remark 2.3 Lemma 2.2 is true only for vk being the terminus of W1 and the origin of W2
and it is not true for any vk ∈ V1∩V2. For instance, let W1 = x0e0x1e4x2e1x0e2x3 and W2 =
y0f0x0f1y2 (see Fig. 2). Here, x0 is the vertex common in the vertex set of both W1 and W2.
But it is not both: terminus of W1 and origin of W2, so W1 ·x0 W2 is not an Eulerian trail (see
Fig. 3).

How are Eulerian trails connected to formal languages? 34

x2

x0

x1

x3

y2

x0

y0

e0 e1

e2

e4

f1f0

W2

W1

Figure 2: Eulerian trails W1 and W2

x2

x0

x1

x3
y0

y2

e2

e1

e0

e4

f0

f1

Figure 3: W1 ·x0 W2

To prove the other inclusion of Lemma 2.1, let us define the homomorphism h : Σ∗→{→,←}∗
such that h(→) =→, h(←) =← and h(|) = ε. Let us consider w ∈ Σ∗ \ (({|}Σ∗)∪{←}). We
have to prove that w ∈ ET . For this let us restate Σ∗ \ (({|}Σ∗)∪{←})⊆ ET in more detail as
in the following lemma.

Lemma 2.4 Let w ∈ Σ∗ \ (({|}Σ∗)∪{←}). Let k ∈ N0. If |h(w)| = k, then w corresponds to
an Eulerian trail W with `(W) = ε(W) = k of a graph G= (V,E,ψ) with ν(G) = ν(W) = n
where k+1≥ n≥ 1 and ε(G) = k that has a PLD φ : V → Z such that word(G,φ,W) = w.

An illustration of Lemma 2.4 is in [2]

Theorem 2.5 ET = Σ∗ \ (({|}Σ∗)∪{←}).
Proof. The proof follows from Lemmas 2.1 and 2.4. 2

3. Standard PLD
In Section 1 we saw that given any connected graph G= (V,E,ψ) with an Eulerian trail W and
any PLD φ : V → Z, we find a word w ∈ ET . Conversely, given any word w ∈ ET we find the
connected graph G = (V,E,ψ) with an Eulerian trail W that has a PLD φ : V → Z such that
word(G,φ,W) = w.

Definition 3.1 Let φ : V → Z be a PLD of the graph G = (V,E,ψ) with an Eulerian trail W
with `(W) = ε(G) = k and ν(W) = ν(G) = n where k+ 1 ≥ n ≥ 1, k ∈ N0. Let φ(vi) = zi
where vi ∈ V and 0 ≤ i ≤ k. The translation of φ, φT : V → Z is defined by φT (vi) = zi+C
where C ∈ Z.

Definition 3.2 Let P be the set of all PLDs. Let φ1, φ2 ∈ P . We say that φ1, φ2 are equivalent,
φ1 w φ2 if and only if φ1(v)−φ2(v) = d for some d ∈ Z and for all v ∈ V .

As the name chosen in the previous definition suggests, we can prove that the relation w on P
is an equivalence relation:

Lemma 3.3 w ⊆ P×P is an equivalence relation.

How are Eulerian trails connected to formal languages? 35

Since w on the set P is an equivalence relation. For each φ1 ∈ P we can define the equivalence
class of φ1, denoted by [φ1], to be the set

[φ1] = {φ2 ∈ P | φ2 w φ1}.

Definition 3.4 A PLD φw of Gw is said to be a standard PLD, if and only if the start vertex v0
of the Eulerian trail W of Gw satisfies the condition that φw(v0) = 0.

4. Eulerian Traces
This section gives certain subsets of ET that describe few properties of the Eulerian traces.

Lemma 4.1 ET ∈REG.

Proof. By Theorem 2.5, ET = Σ∗ \ (({|}Σ∗)∪{←}). Since ET is expressed by a regular
expression Σ∗ \ (({|}Σ∗)∪{←}), Σ = {→,←, |}, ET ∈REG. 2

Definition 4.2 ET ◦ = {w ∈ Σ∗ : w ∈ ET ∧Gw is Eulerian}, Σ = {→,←, |}.

Theorem 4.3 ET ◦ is a deterministic blind one-counter language.

Definition 4.4 ETloop-free = {w ∈ Σ∗ : w ∈ ET \{ε}∧Gw has no loops}.

Lemma 4.5 ∀w ∈ ET \{ε} [w ∈ ((→+←)|+)+ ⇐⇒ Gw has no loops].

Theorem 4.6 ETloop-free ∈REG

References
[1] H. FERNAU, M. PARAMASIVAN, Formal Language Questions for Eulerian Trails. In: T. NEARY,

M. COOK (eds.), Machines, Computations and Universality, MCU. Electronic Proceedings in The-
oretical Computer Science EPTCS 128, Open Publishing Association, 2013, 25–26.

[2] M. PARAMASIVAN, Operations on Graphs, Arrays and Automata. Dissertation, Universität Trier,
2017.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

36–37.

Erweiterungen zu kleinen synchronisierenden Wörtern
Henning Fernau(A)

(A)Universität Trier, Abteilung Informatikwissenschaften, CIRT, 54296 Trier
{fernau}@uni-trier.de

Zusammenfassung

Erweiterungsprobleme wurden bislang vornehmlich für kombinatorische Probleme auf
Graphen betrachtet. Hier wird diese Betrachtungsweise an synchronisierenden Wörtern er-
probt. Im Gegensatz zu bisherigen Szenarien ergibt sich ein reichhaltiges komplexitätstheo-
retisches Bild in Abhängigkeit von der Wahl der Halbordnung auf der Menge aller Wörter.

1. Einleitung
Erweiterungsprobleme sind als fast schon spielerische Abart schwerer kombinatorischer Pro-
bleme bekannt; es sei nur an Lateinische Quadrate oder Spiele wie Sudoku erinnert. Immer
geht es darum, eine vorgegebene Teillösung zu einer gültigen Lösung zu erweitern.

Im Bereich klassischer (graphentheoretischer) kombinatorischer Probleme kommt folgende
Betrachtung als Motivation hinzu: Sowohl zum Auffinden von Lösungen als auch zum Auf-
listen aller (minimaler oder maximaler) Lösungen kommen oft Algorithmen zum Einsatz, die
bestehende Teillösungen zu erweitern versuchen. Dabei ist es interessant zu wissen, ob eine
Teillösung überhaupt zu einer interessierenden Lösung erweitert werden kann oder nicht.

Wir möchten ein konkretes Problem ansprechen und damit die Vorgehensweise erklären.
Verfahren zur Lösung des Knotenüberdeckungsproblems arbeiten häufig so, dass für einen ge-
wählten Knoten entschieden wird (durch Fallunterscheidung, d.h. also durch Verzweigen), ob
er in die Lösung kommt oder nicht (im letzteren Falle müssen dann alle seine Nachbarn in die
Lösungsmenge aufgenommen werden). Bevor nun rekursiv das Verfahren fortgesetzt wird, wä-
re es gut zu wissen, ob es überhaupt eine inklusionsminimale Überdeckung gibt, die alle bisher
in die Teillösung aufgenommenen Knoten enthält. Leider (und möglicherweise ist das etwas
erstaunlich) ist diese Fragestellung NP-schwer, selbst bei sehr eingeschränkten Graphklassen.

Abstrakter betrachtet liegt eine Halbordnung auf der Menge der Teillösungen vor (konkret
die Inklusionshalbordnung auf der Menge der Knotenmengen beim Knotenüberdeckungspro-
blem), und es stellt sich die Frage, ob es eine (in dieser Halbordnung) größere Teillösung gibt,
die eine gültige Lösung darstellt, zu der es aber keine (in dieser Halbordnung) echt kleinere
gültige Lösung gibt. Diese Sichtweise überträgt sich ganz natürlich auch beispielsweise auf
kombinatorische Probleme, bei denen Wörter (und nicht Mengen) Teillösungen darstellen. Im
Gegensatz zu Mengen gibt es nun aber eine ganze Reihe natürlicher Halbordnungsbegriffe auf
Wörtern. Diese Szenarien haben wir in dieser Arbeit im Kontext mit synchronisierenden Wör-
tern diskutiert.

(A)Eine Langfassung erscheint im Sonderband über synchronisierende Wörter bei JALC [2].

Erweiterungen zu kleinen synchronisierenden Wörtern 37

2. Erweiterungsprobleme bei synchronisierenden Wörtern
Ein deterministischer endlicher Halbautomat (DEH) wird beschrieben durch ein Tripel A =
(S,Σ, δ), wobei S,Σ Alphabete sind und δ : S×Σ→ S eine Abbildung ist, die in natürlicher
Weise auch als δ : 2S ×Σ∗ → 2S aufgefasst werden kann. Ein Wort w ∈ Σ∗ heißt synchroni-
sierend, falls |δ(S,w)| = 1. Bekanntermaßen [3, 1] ist die Frage, of ein DEH ein synchroni-
sierendes Wort der Länge höchstens k besitzt, NP-schwer. Ist nun ≺ eine Halbordnung auf Σ∗,
so können wir das SW-Erweiterungsproblem bzgl. ≺, kurz EXT DFA-SW-≺, folgendermaßen
definieren: Gegeben ist ein DEH A = (S,Σ, δ) sowie ein Wort u ∈ Σ∗, gibt es w ∈ Σ∗, u ≺ w,
sodass w ≺-minimal ist in der Menge Lsync(A) der synchronisierenden Wörter von A?

Wir betrachten diese Fragestellung für ≺ ∈ PO := {v ,w , |,sub,≤lex,≤ll}, wobei

• v bzw. w die Präfix- bzw. Suffixrelation,

• | die Teilfolgenrelation,

• sub die Teilwort- (oder Faktor-) Relation sowie

• ≤lex und≤ll die eine vorgegebene Ordnung auf dem Alphabet fortsetzende lexikographi-
sche bzw. längenlexikographische Ordnung bezeichnet.

Wir können unsere Ergebnisse wie folgt zusammenfassen:

• EXT DFA-SW-v bzw. EXT DFA-SW-w sind in Polynomzeit entscheidbar.

• EXT DFA-SW-| ist NP-schwer.

• Der Status von EXT DFA-SW-sub ist ungeklärt.

• EXT DFA-SW-≤lex ist in Polynomzeit entscheidbar.

• EXT DFA-SW-≤ll ist co-NP-schwer.

Ähnliche Ergebnisse kann man auch für verschiedene Einschränkungen endlicher Auto-
maten festhalten. Einzelheiten hierzu finden sich in einer Arbeit, die gemeinsam mit Stefan
Hoffmann entstand [2].

Literatur
[1] D. EPPSTEIN, Reset Sequences for Monotonic Automata. SIAM Journal on Computing 19 (1990) 3,

500–510.

[2] H. FERNAU, S. HOFFMANN, Extensions to minimal synchronizing words. Journal of Automata,
Languages and Combinatorics 24 (2019), 287–307.

[3] I. K. RYSTSOV, On minimizing the length of synchronizing words for finite automata. In: Theory of
Designing of Computing Systems. Institute of Cybernetics of Ukrainian Acad. Sci., 1980, 75–82. In
russischer Sprache.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

38–41.

Computational Complexity of Synchronization under
Regular Constraints

Henning Fernau(A) Vladimir V. Gusev(B) Stefan Hoffmann(A)

Markus Holzer(C) Mikhail V. Volkov(D) Petra Wolf(A)

(A)Universität Trier
{fernau, hoffmanns, wolfp}@uni-trier.de

(B)University of Liverpool
vladimir.gusev@liverpool.ac.uk

(C)Universität Gießen
holzer@informatik.uni-giessen.de

(D)Ural Federal University
m.v.volkov@urfu.ru

Abstract

Many variations of synchronization of finite automata have been studied in the previous
decades. Here, we suggest studying the question if synchronizing words exist that belong to
some fixed constraint language, given by some partial finite automaton called constraint au-
tomaton. We show that this synchronization problem becomes PSPACE-complete even for
some constraint automata with two states and a ternary alphabet. In addition, we character-
ize constraint automata with arbitrarily many states for which the constrained synchroniza-
tion problem is polynomial-time solvable. We classify the complexity of the constrained
synchronization problem for constraint automata with two states and two or three letters
completely and lift those results to larger classes of finite automata.

1. Introduction
Synchronization is an important concept for many applied areas: parallel and distributed pro-
gramming, system and protocol testing, information coding, robotics, etc. At least some aspects
of synchronization are captured by the notion of a synchronizing automaton; for instance, syn-
chronizing automata adequately model situations in which one has to direct a certain system to
a particular state without a priori knowledge of its current state. We only refer to some survey
papers [8, 10] that report on some of these applications. An automaton is called synchronizing
if there exists a word that brings it to a known state independently of the starting state. This
concept is quite natural and has been investigated intensively in the last six decades. It is related

The second author is supported by the Leverhulme Trust. The last two authors are supported by the DFG-
funded project FE560/9-1.

Computational Complexity of Synchronization under Regular Constraints 39

to the arguably most famous open combinatorial question in automata theory, formulated by
Černý in [1]. The Černý conjecture states that every n-state synchronizing automaton can be
synchronized by a word of length smaller or equal (n− 1)2. Although this bound was proven
for several classes of finite-state automata, the general case is still widely open. The currently
best upper bound on this length is cubic, and only very little progress has been made, basically
improving on the multiplicative constant factor in front of the cubic term, see [9].

Due to the importance of this notion of synchronizing words, quite a large number of gen-
eralizations and modifications have been considered in the literature. We only mention four of
these in the following. Instead of synchronizing the whole set of states, one could be interested
in synchronizing only a subset of states. This and related questions were first considered by
Rystsov in [7]. Instead of considering deterministic finite automata (DFAs), one could alter-
natively study the notion of synchronizability for nondeterministic finite automata [3, 6]. The
notion of synchronizability naturally transfers to partially defined transition functions where
a synchronizing automata avoiding undefined transitions is called carefully synchronizing, see
[5, 6]. Recall that the question of synchronizability (without length bounds) is solvable in poly-
nomial time for complete DFAs [10]. However, in all of the mentioned generalizations, this
synchronizability question becomes even PSPACE-complete. This tendency can also be ob-
served in the generalization that we introduce in this paper, which we call regular constraints.
These constraints are defined by some (fixed) finite automaton describing a regular language R,
and the question is, given some DFA A, if A has a synchronizing word from R. This notion
explicitly appeared in [4] as an auxiliary tool: it was shown that the synchronization problem
of every automaton A = (Σ,Q,δ) whose letters σ have ranks at most r, i.e., |δ(Q,σ)| ≤ r, is
equivalent to the synchronization of an r-state automaton A′ under some regular constraints.

The main research question that we look into is to understand for which regular constraints
the question of synchronizability is solvable in polynomial time (as it is for R = Σ∗), or for
which it is hard. Furthermore, it would be interesting to see complexity classes different from P
and PSPACE to show up (depending on R). In our paper, we give a complete description of the
complexity status for constraints that can be described by partial 2-state deterministic automata
on alphabets with at most three letters. In this case, indeed, we only observe P and PSPACE
situations. However, we also find 3-state automata (on binary input alphabets) that exhibit an
NP-complete synchronization problem when considered as constraints. We describe how to
generalize our results to larger constraint automata. Moreover, we identify several classes of
constraint automata that imply feasible synchronization problems.

This brief outline is an excerpt from [2].

2. Preliminaries and Definitions
Throughout the paper, we consider deterministic finite automata (DFAs). Recall that a DFA A
is a tupleA= (Σ,Q,δ,q0,F), where the alphabet Σ is a finite set of input symbols,Q is the finite
state set, with start state q0 ∈Q, and final state set F ⊆Q. The transition function δ :Q×Σ→Q
extends to words from Σ∗ and to sets of states S ⊆ Q in the usual way. We sometimes refer to
the function δ as a relation and we identify a transition δ(q,σ) = q′ with the tuple (q,σ,q′). We
call A complete if δ is defined for every (q,a) ∈ Q×Σ; if δ is undefined for some (q,a), the
automaton A is called partial. The set L(A) = {w ∈ Σ∗ | δ(q0,w) ∈ F } denotes the language

Computational Complexity of Synchronization under Regular Constraints 40

accepted by A. A semi-automaton is a finite automaton without a specified start state and with
no specified set of final states. The properties of being deterministic, partial, and complete of
semi-automata are defined as for DFA. When the context is clear, we call both deterministic
finite automata and semi-automata simply automata. We call a deterministic complete semi-
automaton a DCSA and a partial deterministic finite automaton a PDFA for short. If we want
to add an explicit initial state r and an explicit set of final states S to a DCSA A or change them
in a DFA A, we use the notation Ar,S . For an automaton A over the alphabet Σ, we denote with
AΣ′ for every Σ′ ⊂ Σ the restriction of A to the alphabet Σ′.

An automaton A is called synchronizing if there exists a word w ∈ Σ∗ with |δ(Q,w)| = 1.
In this case, we call w a synchronizing word for A. We call a state q ∈ Q with δ(Q,w) = {q}
for some w ∈ Σ∗ a synchronizing state. An automaton A is called returning, if for every state
q ∈Q, there exists a word w ∈ Σ∗ such that δ(q,w) = q0, where q0 is the start state of A.

For a fixed PDFA B = (Σ,P,µ,p0,F), we define the constrained synchronization problem:

Definition 2.1 L(B)-CONSTR-SYNC

Input: DCSA A= (Σ,Q,δ).
Question: Is there a synchronizing word w for A with w ∈ L(B)?

3. Results - Overview
Theorem 3.1 If B = (Σ,P,µ,p0,F) is returning, then L(B)-CONSTR-SYNC ∈ P.

Theorem 3.2 Let B = (Σ,P,µ,p0,F) be a PDFA. Then, L(B)-CONSTR-SYNC ∈ NP if there is
a σ ∈ Σ such that for all states p ∈ P , if L(Bp,{p}) is infinite, then L(Bp,{p})⊆ {σ}∗.

Corollary 3.3 Under the assumptions of Theorem 3.2, L(B)-CONSTR-SYNC is in XP with
parameter k counting the number of sun-structures in A{σ} for an input DCSA A.

Theorem 3.4 For any two-state binary PDFA B, L(B)-CONSTR-SYNC ∈ P.

a(b+ c)∗ (a+ b)∗c (a+ b)∗cc∗ a∗b(b+ c)∗

(a+ b+ c)(a+ b)∗ (a+ b)∗ca∗ a∗b(a+ c)∗ (a+ b)∗c(b+ c)∗

(a+ b)(a+ c)∗ (a+ b)∗c(a+ b)∗ a∗(b+ c)(a+ b)∗ a∗(b+ c)(b+ c)∗

Table 1: Languages accepted by constraint automata (2 states, 3 letters) causing PSPACE-hard synchro-
nization.

Theorem 3.5 For each constraint language L in Table 1 the problem L-CONSTR-SYNC is
PSPACE-hard. For any other constraint language which can be accepted by a two-state ternary
PDFA B, the problem L(B)-CONSTR-SYNC is in P.

Theorem 3.6 For L= ab∗a, the problem L-CONSTR-SYNC is NP-complete.

Theorem 3.7 Let B = (ΣB,PB,µB,pB0 ,F) and C = (ΣC ,P C ,µC ,pC0 ,∅) be PDFAs with PB ∩
P C = ∅. For px ∈P C let ν ⊆{px}×(ΣB∪ΣC)×{pB0 } define the automaton B′= (ΣB∪ΣC ,PB∪
P C ,µB ∪µC ∪ν,pC0 ,F). If the following three conditions are satisfied:

Computational Complexity of Synchronization under Regular Constraints 41

1. automaton B′ is deterministic,
2. automaton C′ = (ΣB∪ΣC ,P C ∪{pB0 },µC ∪ν∪{pB0 }× (ΣB∪ΣC)×{pB0 }) is carefully syn-

chronizing, and
3. there exists a synchronizing word v = v1 . . .vn for C′ such that v1 . . .vn−1 ∈ L(Cpx),

where Cpx results from C by adding px to the set of final states,
then L(B)-CONSTR-SYNC ≤ L(B′)-CONSTR-SYNC.

Corollary 3.8 Let the language-family L consists of languages Li := (b∗a)i with i ≥ 2. The
constrained synchronization problem for all languages in L is NP-complete.

References
[1] J. ČERNÝ, Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-

fyzikálny časopis 14 (1964) 3, 208–216.

[2] H. FERNAU, V. V. GUSEV, S. HOFFMANN, M. HOLZER, M. V. VOLKOV, P. WOLF, Computa-
tional Complexity of Synchronization under Regular Constraints. In: 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany.. 2019, 63:1–63:14.

[3] Z. GAZDAG, S. IVÁN, J. NAGY-GYÖRGY, Improved upper bounds on synchronizing nondeter-
ministic automata. Information Processing Letters 109 (2009) 17, 986–990.

[4] V. V. GUSEV, Synchronizing Automata of Bounded Rank. In: N. MOREIRA, R. REIS (eds.),
Implementation and Application of Automata - 17th International Conference, CIAA. LNCS 7381,
Springer, 2012, 171–179.

[5] P. MARTYUGIN, Complexity of Problems Concerning Reset Words for Some Partial Cases of Au-
tomata. Acta Cybernetica 19 (2009) 2, 517–536.

[6] P. V. MARTYUGIN, Computational Complexity of Certain Problems Related to Carefully Synchro-
nizing Words for Partial Automata and Directing Words for Nondeterministic Automata. Theory of
Computing Systems 54 (2014) 2, 293–304.

[7] I. K. RYSTSOV, Polynomial Complete Problems in Automata Theory. Information Processing Let-
ters 16 (1983) 3, 147–151.

[8] S. SANDBERG, Homing and Synchronizing Sequences. In: M. BROY, B. JONSSON, J. KATOEN,
M. LEUCKER, A. PRETSCHNER (eds.), Model-Based Testing of Reactive Systems, Advanced Lec-
tures. LNCS 3472, Springer, 2005, 5–33.

[9] M. SZYKUŁA, Improving the Upper Bound on the Length of the Shortest Reset Word. In: R. NIE-
DERMEIER, B. VALLÉE (eds.), 35th Symposium on Theoretical Aspects of Computer Science,
STACS. LIPIcs 96, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 56:1–56:13.

[10] M. V. VOLKOV, Synchronizing Automata and the Černý Conjecture. In: C. MARTÍN-VIDE,
F. OTTO, H. FERNAU (eds.), Language and Automata Theory and Applications, Second Inter-
national Conference, LATA. LNCS 5196, Springer, 2008, 11–27.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

42–44.

Eigenschaften und Zustandskomplexität kommutativer
regulärer Sprachen

Stefan Hoffmann(A)

(A)Universität Trier, Abteilung Informatikwissenschaften, CIRT, 54296 Trier
{hoffmanns}@uni-trier.de

Zusammenfassung

Eine formale Sprache heisst kommutativ, sofern sie unter dem vertauschen einzelner
Zeichen abgeschlossen ist. Ein endlicher Automat heisst kommutativ, wenn die durch die
Zeichen induzierten Abbildungen kommutieren. Es hat sich gezeigt dass kommutative Au-
tomaten in Härtebeweisen auftreten können, demgegenüber aber eine einfache kombinato-
rische Struktur aufweisen. Wir werden ein kanonisches Automatenmodell für diese Spra-
chen einführen welches sich als nützlich zur Herleitung der Zustandskomplexität verschie-
dener Operationen erwiesen hat. Dabei zeigt sich dass kommutative reguläre Sprachen
sich bezüglich Zustandskomplexität unter der Shuffle-Operation und der Projektion bes-
ser verhalten als im allgemeinen Fall. Weiterhin sind minimale synchronisierende Wörter
für kommutative Automaten stets linear beschränkt. Wir stellen einen kombinatorischen
Beweis dieser Aussage vor, und klassifizieren außerdem jene kommutativen Automaten für
die diese Schranke angenommen wird.

1. Einleitung
Ein deterministischer endlicher Halbautomat (DEH) wird beschrieben durch ein Tripel A =
(S,Σ, δ), wobei S,Σ Alphabete sind und δ : S×Σ→ S eine Abbildung ist, die in natürlicher
Weise auch als δ : 2S ×Σ∗ → 2S aufgefasst werden kann. Ein Wort w ∈ Σ∗ heißt synchroni-
sierend, falls |δ(S,w)| = 1. Ein endlicher Automat (DEA) wird beschrieben durch ein Tupel
A = (S,Σ, δ,s0,F), wobei (S,Σ, δ) ein DEH bildet, sowie F ⊆ S die Finalzustandsmenge dar-
stellt und s0 der Startzustand ist. Es ist L(A) = {w ∈ Σ∗ : δ(s0,w) ∈ F} die durch den Automa-
ten beschriebene Sprache. Ein DEH (bzw. ein DEA) heisst kommutativ sofern für alle Zustände
∈ S und alle Zeichen a,b ∈ Σ gilt δ(s,ab) = δ(s,ba). Eine Sprache L ⊆ Σ∗ heisst kommutativ
sofern aus uabv ∈ L folgt ubav ∈ L für u,v ∈ Σ∗ und a,b ∈ Σ. Eine reguläre Sprache ist ge-
nau dann kommutativ wenn Sie von einem kommutativen Automaten akzeptiert wird. Es sei
Σ = {a1, . . . ,ak} unser Alphabet. Die Homomorphismen πi : Σ∗→{ai} für i= 1, . . . ,k, welche
durch πi(ai) = ai und πi(aj) = ε für i 6= j gegeben sind heissen Projektionen. Weiterhin ist zu
U,V ⊆ Σ∗ die Operation

U�V := {u1v1u2v2 · · ·unvn : u1u2 · · ·un ∈ U,v1v2 · · ·vn ∈ V,ui,vi ∈ Σ∗, i= 1, . . . ,n}

die Shuffle-Operation auf Sprachen. Der minimale, kanonische kommutative Automat wurde in
[3] eingeführt.

Eigenschaften und Zustandskomplexität kommutativer regulärer Sprachen 43

Definition 1.1 Es sei L eine kommutative Sprache. Der minimale kanonische kommutative Au-
tomat ist CL = (Σ,S1× . . .×Sk, δ,s0,F) mit

Sj := {[amj]≡L : m≥ 0},
s0 := ([ε]≡L , . . . , [ε]≡L),

F := {([π1(w)]L, . . . , [πk(w)]L) : w ∈ L}

und δ((s1, . . . , sj , . . . , sk),aj) := (s1, . . . , δj(sj ,aj), . . . , sk) mit Ein-Zeichen-Übergängen

δj([a
m
j]≡L ,aj) := [am+1

j]≡L

für j = 1, . . . ,k und s0 := ([ε]≡L , . . . , [ε]≡L).

2. Ergebnisse zur Zustandskomplexität
Die Zustandskomplexität einer Operation auf regulären Sprachen ist die maximale Größe des
kleinsten Automaten welcher die Ergebnissprache akzeptiert in Abhängigkeit von den Zu-
standsgrößen der Eingabeautomaten, siehe [6] für weitere Informationen. Sind zwei endli-
che Automaten A und B mit m und n Zuständen gegeben, so wurde in [1] die allgemeine
Schranke 2mn−1 + 2(m−1)(n−1)(2m−1− 1)(2n−1− 1) für die Zustände eines Automaten wel-
cher L(A)�L(B) akzeptiert gezeigt.

Theorem 2.1 Sind U und V kommutative reguläre Sprachen, welche durch Automaten mit n
und m Zuständen akzeptiert werden, so hat ein kleinster Automat welche U � V akzeptiert
höchstens (2nm)k Zustände.

Die Zustandszahl eines Automaten für πi(L) wächst im Allgemeinen mit eΘ(
√
n lnn).

Theorem 2.2 Ist U kommutativ und regulär und wird durch einen Automaten mit n Zuständen
akzeptiert, so kann πi(U) für i = 1, . . . ,k von einem Automaten mit höchstens n Zuständen
akzeptiert werden.

Diese Ergebnisse finden sich in [4].

3. Ergebnisse zur Synchronisierbarkeit
In [5] wurde gezeigt das in einem kommutativen DEH mit n Zuständen ein kürzestes synchroni-
sierendes Wort höchstens Länge n−1 haben kann. Der Beweis wurde durch Linearisierung der
Automaten mit algebraischen Methoden erbracht. Der Autor fragte abschließend nach einem
kombinatorischen Beweis. Dieser wurde in [2] geliefert, darüber hinaus konnten jene Automa-
ten klassifiert werden für welche die Schranke angenommen wird. Ein kommutativer synchro-
nisierender Automat heisst extremal, falls das kürzeste synchronisierende Wort die Länge n−1
hat. Zu einem DEA A = (S,Σ, δ,s0,F) (oder DEH A = (S,Σ, δ)) und T ⊆ S bezeichnen wir
mit A|T = (S,Σ, δ|T) den partiellen DEH (d.h. δ|T : T ×Σ→ T ist nur eine partielle Funktion)
mit δ|T (t,x) = δ(t,x) falls t ∈ T , x ∈ Σ und δ(t,x) ∈ T , anderenfalls undefiniert.

Eigenschaften und Zustandskomplexität kommutativer regulärer Sprachen 44

Lemma 3.1 In einem synchronisierenden kommutativen vollständigen DEH gibt es nur einen
eindeutig bestimmten synchronisierenden Zustand, und dieser ist ein Fangzustand (d.h. alle
ausgehenden Transitionen sind Schleifen).

Zu einem partiellen DEHA= (S,Σ, δ) sagen wir dass a∈ Σ als Verschiebung auf S operiert,
sofern eine lineare Ordnung auf den Zuständen existiert so dass für alle Zustände s außer dem
maximalen Element sf in dieser Ordnung δ(s,a) das kleinste Element ist, welches größer als s
ist.

Theorem 3.2 Es sei Σ = {a1, . . . ,ak} und A = (S,Σ, δ) ein vollständiger, kommutativer und
synchronisierbarer extremaler DEH mit eindeutigen synchronisierenden Zustand sf . Sofern alle
Buchstaben unterschiedlich operieren, dann kann man S = S1 ∪ ·· · ∪Sk schreiben mit S1 ∩
·· · ∩Sk = {sf} und jedes A|Si

ist ein vollständiger Automat auf welchem ai als Verschiebung
operiert, wobei sf der maximale Zustand ist, und jedes andere Symbol als identische Abbildung
operiert.

Corollary 3.3 Jeder extremale, vollständige, synchronisierbare kommutative Automat ist ge-
ordnet. Im Falle eines binären Alphabets ist er sogar linear geordnet.

Literatur
[1] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LIU, A. RAJASEKARAN, M. SZYKULA, On the State

Complexity of the Shuffle of Regular Languages. In: Descriptional Complexity of Formal Systems
- 18th IFIP WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8, 2016.
Proceedings. 2016, 73–86.
https://doi.org/10.1007/978-3-319-41114-9_6

[2] H. FERNAU, S. HOFFMANN, Extensions to minimal synchronizing words. Journal of Automata,
Languages and Combinatorics 24 (2019), 287–307.

[3] A. C. GÓMEZ, G. I. ALVAREZ, Learning Commutative Regular Languages. In: Grammatical Infe-
rence: Algorithms and Applications, 9th International Colloquium, ICGI 2008, Saint-Malo, France,
September 22-24, 2008, Proceedings. 2008, 71–83.
https://doi.org/10.1007/978-3-540-88009-7_6

[4] S. HOFFMANN, Commutative Regular Languages - Properties and State Complexity. In: M. CIRIC,
M. DROSTE, J. PIN (eds.), Algebraic Informatics - 8th International Conference, CAI 2019, Niš,
Serbia, June 30 - July 4, 2019, Proceedings. Lecture Notes in Computer Science 11545, Springer,
2019, 151–163.
https://doi.org/10.1007/978-3-030-21363-3_13

[5] I. K. RYSTSOV, Exact linear bound for the length of reset words in commutative automata. Publi-
cationes Mathematicae, Debrecen 48 (1996) 3-4, 405–409.

[6] S. YU, Q. ZHUANG, K. SALOMAA, The State Complexities of Some Basic Operations on Regular
Languages. Theoretical Computer Science 125 (1994) 2, 315–328.
http://dx.doi.org/10.1016/0304-3975(92)00011-F

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

45–48.

Graph and String Parameters: Connections Between
Pathwidth, Cutwidth and the Locality Number

Katrin Casel(A) Joel D. Day(B) Pamela Fleischmann(C)

Tomasz Kociumaka(D) Florin Manea(C) Markus L. Schmid(E)

(A)Hasso Plattner Institute, University of Potsdam, Germany
Katrin.Casel@hpi.de

(B)Loughborough University, UK
J.Day@lboro.ac.uk

(C)Kiel University, Germany
{fpa,flm}@informatik.uni-kiel.de

(D)Bar-Ilan University, Israel, and University of Warsaw, Poland
kociumaka@mimuw.edu.pl

(E)Humboldt University, Berlin, Germany
mlschmid@mlschmid.de

Abstract

We investigate the locality number, a recently introduced structural parameter for strings
(with applications in pattern matching with variables), and its connection to two impor-
tant graph-parameters, cutwidth and pathwidth. These connections allow us to show that
computing the locality number is NP-hard but fixed parameter tractable (when the local-
ity number or the alphabet size is treated as a parameter), and can be approximated with
ratio O(

√
logopt logn). As a by-product, we also relate cutwidth via the locality number

to pathwidth, which is of independent interest, since it improves the currently best known
approximation algorithm for cutwidth. In addition to these main results, we also consider
the possibility of greedy-based approximation algorithms for the locality number.

1. Overview
Graphs, on the one hand, and strings, on the other, are two different types of data objects and
they have certain particularities. Graphs seem to be more popular in fields like classical and
parameterised algorithms and complexity (due to the fact that many natural graph problems are
intractable), while fields like formal languages, pattern matching, verification or compression
are more concerned with strings. Moreover, both the field of graph algorithms as well as string
algorithms are well established and provide rich toolboxes of algorithmic techniques, but they
differ in that the former is tailored to computationally hard problems (e. g., the approach of
treewidth and related parameters), while the latter focuses on providing efficient data-structures

Graph and String Parameters 46

for near-linear-time algorithms. Nevertheless, it is sometimes possible to bridge this divide,
i. e., by “flattening” a graph into a sequential form, or by “inflating” a string into a graph, to
make use of respective algorithmic techniques otherwise not applicable. This paradigm shift
may provide the necessary leverage for new algorithmic approaches.

In this presentation, we are concerned with certain structural parameters (and the problems
of computing them) for graphs and strings: the cutwidth cw(G) of a graphG (i. e., the maximum
number of “stacked” edges if the vertices of a graph are drawn on a straight line), the pathwidth
pw(G) of a graph G (i. e., the minimum width of a tree decomposition the tree structure of
which is a path), and the locality number loc(α) of a string α (explained in more detail in
the next paragraph). By CUTWIDTH, PATHWIDTH and LOC, we denote the corresponding
decision problems and with the prefix MIN, we refer to the minimisation variants. The two
former graph-parameters are very classical. Pathwidth is a simple (yet still hard to compute)
subvariant of treewidth, which measures how much a graph resembles a path. The problems
PATHWIDTH and MINPATHWIDTH are intensively studied (in terms of exact, parameterised and
approximation algorithms) and have numerous applications (see the surveys and textbook [4,
12, 2]). CUTWIDTH is the best known example of a whole class of so-called graph layout
problems (see the survey [8, 14] for detailed information), which are studied since the 1970s
and were originally motivated by questions of circuit layouts.

The locality number is rather new and we shall discuss it in more detail. A word is k-local
if there exists an order of its symbols such that, if we mark the symbols in the respective order
(which is called a marking sequence), at each stage there are at most k contiguous blocks of
marked symbols in the word. This k is called the marking number of that marking sequence.
The locality number of a word is the smallest k for which that word is k-local, or, in other
words, the minimum marking number over all marking sequences. For example, the marking
sequence σ = (x,y,z) marks α = xyxyzxz as follows (marked blocks are illustrated by over-
lines): xyxyzxz, xyxyzxz, xyxyzxz, xyxyzxz; thus, the marking number of σ is 3. In fact,
all marking sequences for α have a marking number of 3, except (y,x,z), for which it is 2:
xyxyzxz, xyxyzxz, xyxyzxz. Thus, the locality number of α, denoted by loc(α), is 2.

The locality number has applications in pattern matching with variables [6]. A pattern
is a word that consists of terminal symbols (e. g., a,b,c), treated as constants, and variables
(e. g., x1,x2,x3, . . .). A pattern is mapped to a word by substituting the variables by strings
of terminals. For example, x1x1babx2x2 can be mapped to acacbabcc by the substitution
(x1→ ac,x2→ c). Deciding whether a given pattern matches (i. e., can be mapped to) a given
word (called the matching problem) is one of the most important problems that arise in the
study of patterns but, unfortunately, it is NP-complete [1] in general and also intractable in the
parameterised setting [11]). As demonstrated in [15], for the matching problem a paradigm
shift as mentioned above yields a very promising algorithmic approach. More precisely, any
class of patterns with bounded treewidth (for suitable graph representations) can be matched in
polynomial-time. However, computing (and therefore algorithmically exploiting) the treewidth
of a pattern is difficult (see the discussion in [10, 15]), which motivates more direct string-
parameters that bound the treewidth and are simple to compute (virtually all known structural
parameters that lead to tractability, see, e.g., [10] and the references therein, are of this kind
(the efficiently matchable classes investigated in [7] are one of the rare exceptions)). This also
establishes an interesting connection between ad-hoc string parameters and the more general
(and much better studied) graph parameter treewidth. The locality number is a simple parameter

Graph and String Parameters 47

directly defined on strings, it bounds the treewidth and the corresponding marking sequences
can be seen as instructions for a dynamic programming algorithm. However, compared to other
“tractability-parameters”, it seems to cover best the treewidth of a string, but whether it can be
efficiently computed is unclear.

In this presentation, we investigate the problem of computing the locality number and, by
doing so, we establish an interesting connection to the graph parameters cutwidth and pathwidth
with algorithmic implications for approximating cutwidth. In the following, we first discuss
related results in more detail and then outline our respective contributions.
Known Results and Open Questions: For LOC, only exact exponential-time algorithms are
known and whether it can be solved in polynomial-time, or whether it is at least fixed-parameter
tractable is mentioned as open problems in [6]. Approximation algorithms have not yet been
considered. Addressing these questions is the main purpose of this presentation.

PATHWIDTH and CUTWIDTH are NP-complete, but fixed-parameter tractable with respect
to parameter pw(G) or cw(G), respectively (even with “linear” fpt-time g(k)O(n) [3, 5, 16]).
With respect to approximation, their minimisation variants have received a lot of attention,
mainly because they yield (like many other graph parameters) general algorithmic approaches
for numerous graph problems, i. e., a good linear arrangement or path-decomposition can often
be used for a dynamic programming (or even divide and conquer) algorithm. More generally
speaking, pathwidth and cutwidth are related to the more fundamental concepts of small bal-
anced vertex or edge separators for graphs (i. e., a small set of vertices (or edges, respectively)
that, if removed, divides the graph into two parts of roughly the same size. More precisely,
pw(G) and cw(G) are upper bounds for the smallest balanced vertex separator of G and the
smallest balanced edge separator of G, respectively (see [9] for further details and explanations
of the algorithmic relevance of balanced separators). The best known approximation algorithms
for MINPATHWIDTH and MINCUTWIDTH (with approximations ratios of O(

√
log(opt) log(n))

and O(log2(n)), respectively) follow from approximations of vertex separators (see [9]) and
edge separators (see [13]), respectively.
Our Contributions: There are two natural approaches to represent a word α over alphabet Σ as
a graph Gα = (Vα,Eα): (1) Vα = {1,2, . . . , |α|} and the edges are somehow used to represent
the actual symbols, or (2) Vα = Σ and the edges are somehow used to represent the positions
of α. We present a reduction of type (2) such that |Eα| = O(|α|) and cw(Gα) = 2 loc(α),
and a reduction of type (1) such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤ 2 loc(α). Since
these reductions are parameterised reductions and also allow to transfer approximation results,
we conclude that LOC is fixed-parameter tractable if parameterised by |Σ| or by the locality
number (answering the respective open problem from [6]), and also that there is a polynomial-
time O(

√
log(opt) log(n))-approximation algorithm for MINLOC.

In addition, we also show a way to represent an arbitrary multi-graph G = (V,E) by a
word αG over alphabet V , of length |E| and with cw(G) = loc(α). This describes a Turing-
reduction from CUTWIDTH to LOC which also allows to transfer approximation results be-
tween the minimisation variants. As a result, we can conclude that LOC is NP-complete (which
solves the other open problem from [6]). Finally, by plugging together the reductions from
MINCUTWIDTH to MINLOC and from MINLOC to MINPATHWIDTH, we obtain a reduction
which transfers approximation results from MINPATHWIDTH to MINCUTWIDTH, which yields
an O(

√
log(opt) log(n))-approximation algorithm for MINCUTWIDTH. This improves, to our

knowledge for the first time since 1999, the best approximation for CUTWIDTH from [13]. The

Graph and String Parameters 48

paper we present here was published in Proc. of ICALP 2019 and it is available on Arxiv.

References
[1] D. ANGLUIN, Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21 (1980), 46–62.

[2] H. L. BODLAENDER, A Tourist Guide through Treewidth. Acta Cybern. 11 (1993) 1-2, 1–21.
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/pdf/Bodlaender_
1993_ActaCybernetica.pdf

[3] H. L. BODLAENDER, A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM J. Comput. 25 (1996) 5, 1305–1317.

[4] H. L. BODLAENDER, A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput.
Sci. 209 (1998) 1-2, 1–45.

[5] H. L. BODLAENDER, Fixed-Parameter Tractability of Treewidth and Pathwidth. In: H. L. BOD-
LAENDER, R. DOWNEY, F. V. FOMIN, D. MARX (eds.), The Multivariate Algorithmic Revolution
and Beyond. LNCS 7370, 2012, 196–227.

[6] J. D. DAY, P. FLEISCHMANN, F. MANEA, D. NOWOTKA, Local Patterns. In: S. V. LOKAM,
R. RAMANUJAM (eds.), Proc. FSTTCS. LIPIcs 93, 2017, 24:1–24:14.

[7] J. D. DAY, P. FLEISCHMANN, F. MANEA, D. NOWOTKA, M. L. SCHMID, On Matching Gener-
alised Repetitive Patterns. In: Proc. DLT . LNCS, 2018, 269–281.

[8] J. DÍAZ, J. PETIT, M. SERNA, A Survey of Graph Layout Problems. ACM Comput. Surv. 34 (2002)
3, 313–356.

[9] U. FEIGE, M. HAJIAGHAYI, J. R. LEE, Improved Approximation Algorithms for Minimum
Weight Vertex Separators. SIAM J. Comput. 38 (2008) 2, 629–657.

[10] H. FERNAU, F. MANEA, R. MERCAŞ, M. L. SCHMID, Pattern Matching with Variables: Fast
Algorithms and New Hardness Results. In: E. W. MAYR, N. OLLINGER (eds.), Proc. STACS.
LIPIcs 30, 2015, 302–315.

[11] H. FERNAU, M. L. SCHMID, Y. VILLANGER, On the Parameterised Complexity of String Mor-
phism Problems. Theory Comput. Syst. 59 (2016) 1, 24–51.

[12] T. KLOKS, Treewidth, Computations and Approximations. Lecture Notes in Computer Science 842,
Springer, 1994.

[13] T. LEIGHTON, S. RAO, Multicommodity Max-flow Min-cut Theorems and Their Use in Designing
Approximation Algorithms. J. ACM 46 (1999) 6, 787–832.

[14] J. PETIT, Addenda to the Survey of Layout Problems. Bulletin of the EATCS 105 (2011), 177–201.
http://eatcs.org/beatcs/index.php/beatcs/article/view/98

[15] D. REIDENBACH, M. L. SCHMID, Patterns with bounded Treewidth. Inf. Comput. 239 (2014),
87–99.

[16] D. M. THILIKOS, M. J. SERNA, H. L. BODLAENDER, Cutwidth I: A linear time fixed parameter
algorithm. J. Algorithms 56 (2005) 1, 1–24.

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

49–51.

Separating Languages of Infinite Words
in the Mostowski Hierarchy

Christopher Hugenroth(A)

(A) christopher.hugenroth@tu-ilmenau.de

Abstract

The Mostowski hierarchy classifies ω-languages according to the range of priorities re-
quired to recognize them with a deterministic parity automaton. The membership problem
for the Mostowski hierarchy can be solved efficiently in many cases. We generalize this re-
sult and show that for two ω-regular languages a separating language can be determined in
polynomial time and that this language is minimal with respect to the Mostowski hierarchy.

1. Introduction
A deterministic parity automaton (DPA) is a finite state automaton with priorities assigned to
each state. A DPA accepts an ω-word if the maximal priority seen in its unique, infinite run is
even. An ω-language L is contained in the Mostowski class [i, j] if there is a parity automaton
A with priorities in {i, . . . , j} and L(A) = L. The priorities of a DPA can be assumed to be
{0, . . . , j} or {1, . . . , j} and we can restrict ourselves to the corresponding Mostowski classes,
see figure 1. This hierarchy is of interest because it is a good indicator of the complexity of
an ω-language. The Mostowski membership problem is to determine whether a language L is
contained in a certain Mostowski class.

[0,0] [1,1]

[0,1] [1,2]

[0,2] [1,3]

...
...

Figure 1: The classes of the Mostowski hierarchy and their relations.

The membership problem can be solved for many classes of automata and the corresponding
classes of recognized languages with the so-called pattern method. This method searches for

(A)The results are part of my master thesis at RWTH Aachen. The thesis was supervised by Christof LÃűding.

Separating Languages of Infinite Words in the Mostowski Hierarchy 50

a certain pattern in an automaton that recognizes a language L and thereby determines the
minimal Mostowski class of L. For deterministic word automata it suffices to determine the
maximal nesting of loops in the automaton, [1], [5]. For deterministic tree automata one can
determine the class in the nondeterministic Mostowski hierarchy, [2]. The patterns used here
are called flowers.

In this paper, we study the Mostowski separation problem which is to decide whether two
given ω-regular languages L1, L2 can be separated with a language in [i, j]. A language L
separates L1 and L2 if L1 ⊆ L and L2∩L= ∅. Notice that L1 and L2 can be separated iff they
are disjoint.

A language L is in [i, j] if, and only if, L and its complement can be separated with a lan-
guage from [i, j], so membership can be reduced to separation. However, the converse doesn’t
seem to hold since for membership there is a fixed recognition device but separation admits in-
finitely many candidates, as noted in [3]. The main idea of our paper is to use product automata
as a fixed device and to solve separation with the pattern-method.

We show that it suffices to compute the maximal nesting depth of loops in a special product
automaton A1×A2 to solve separation for L(A1) and L(A2). We can use the product automa-
ton to obtain a separator if the languages are disjoint. Further, we show that the nesting depth of
loops inA1×A2 is minimal among all separators. For this we use arguments similar to the ones
used in the membership case, [2]. Thus, the obtained separator has a minimal nesting depth and
therefore is in the minimal Mostowski class that contains a separator.

Theorem 1.1 Let L1, L2 be two disjoint ω-regular languages given as DMA.
A DMA A whose language separates L1, L2 can be computed in polynomial time. Further,
L(A) is minimal among all separating languages with respect to the Mostowski hierarchy.

For deterministic parity automata a similar result holds but it remains open whether a sepa-
rator can be computed in polynomial time.

Corollary 1.2 Let L1, L2 be two disjoint ω-regular languages given as DPA.
The minimal Mostowski class that contains a language separating L1 and L2 can be computed
in polynomial time.

I thank Christof LÃűding, the supervisor of my Master’s thesis, for proposing the topic and
for his comments.

References
[1] O. Carton, R. Maceiras Computing the Rabin index of a parity automaton in Theoretical

Informatics and Applications 33, 495–505 (1999)

[2] D. Niwiński, I. Walukiewicz Deciding Nondeterministic Hierarchy of Deterministic Tree
Automata, Electronic Notes in Theoretical Computer Science 123, 195-208 (2005)

[3] T. Place, M. Zeitoun Separating Languages with First Orer Logic, Logical Methods in
Computer Science Vol. 12(1:5), pp. 1âĂŞ30 (2016)

Separating Languages of Infinite Words in the Mostowski Hierarchy 51

[4] L. Staiger, K. W. Wagner,Automatentheoretische und automatenfreie Characterisierungen
topologischer Klassen regulÃd’rer Folgemengen, Elektronische Informationsverarbeitung
und Kybernetik EIK, 10 379âĂŞ392 (1974)

[5] K. W. Wagner On ω-regular sets in Information and Control 43, 123–177 (1979)

THEORIE-TAG 2019

S. Maneth (Herausgeber): Theorietag 2019, Bremen, 25. – 27.9.2019
Universität Bremen, Technischer Bericht der AG Datenbanken, S.

52–56.

Regular Expressions with Backreferences:
Polynomial-Time Matching Techniques

Markus L. Schmid(A)

(A)Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
MLSchmid@MLSchmid.de

Abstract

Regular expressions with backreferences (regex, for short), as supported by most mod-
ern libraries for regular expression matching, have an NP-complete matching problem. We
define a complexity parameter of regex, called active variable degree, such that regex with
this parameter bounded by a constant can be matched in polynomial-time. Moreover, we
formulate a novel type of determinism for regex (on an automaton-theoretic level), which
yields the class of memory-deterministic regex that can be matched in time O(|w|p(|α|))
for a polynomial p (where α is the regex and w the word). It is also shown that natural
extensions of these concepts lead to properties of regex that are intractable to check.

1. Regular Expressions with Backreferences
Regular expressions have been first introduced by Kleene in 1956 [7] as a theoretical concept
(an early implementation is due to Thompson [11]). Since then, they have been enriched with
practically motivated extensions and modifications, which is mainly due to their rather high
practical relevance.

Regular expressions have excellent decidability- and complexity-properties, while at the
same time providing sufficient expressive power for many important computational tasks. The
practical enhancements added over the years are mostly “syntactic sugar” (e. g., character-
groups), or are even restrictions (as, e. g., in deterministic regular expressions) and therefore
preserve these positive properties. However, adding so-called backreferences drastically in-
creases expressive power and therefore leads to intractability and even undecidability. We shall
explain this concept on an intuitive level. A successful match of a regular expression r to a
word w can be interpreted as mapping the symbols of the word to the symbols of the expres-
sion. For example, a possible match of r = (a∨b)∗d to bbd, maps the two occurrences of b
to the occurrence of b in r, and the occurrence of d to the occurrence of d in r. Implicitly,
this also maps larger factors to subexpressions of r, e. g., prefix bb is mapped to (a∨b)∗. A
backreference now allows to postulate that such a factor previously allocated to a subexpression
should be repeated in the word to be matched. For example, the x{. . .}-construct in the expres-
sion s= x{(a∨b)∗}dx stores in variable x whatever subword is matched to the subexpression
(a∨b)∗, and the following occurrence of variable x then refers to exactly this subword (thus,

Regular Expressions with Backreferences: Polynomial-Time Matching Techniques 53

s describes the non-regular language {wdw | w ∈ {a,b}∗}). We use the term regex for regu-
lar expressions with such backreferences. Next, we discuss a few examples to build up some
intuition.

The regex s from above and the language it describes, although non-regular, are rather
simple. However, nesting several backreferenced subexpressions, or subjecting them to the star
operator, e. g., t= y{(xbx{a∗}bx)+}dy∗x, makes the described language much more involved.
Moreover, we encounter semantical particularities that are not explained on this intuitive level:
What is the value of variable x if its “definition” x{. . .} is repeated several times under a star?
What does an occurrence of x refer to if it is encountered before it has been defined for the first
time? Other noteworthy examples of (unary) regex are (x{y}y{xa})∗ and x{aa+}x+, which
describe the sets {an2 | n ≥ 0} of square numbers and the set {amn | n,m ≥ 2} of composite
numbers (in unary encoding), respectively. The simple context-free language {anbn | n ≥ 0}
cannot be expressed by a regex.

Adding backreferences to regular expressions has severe negative consequences with respect
to decidability and computational complexity. The matching problem, i. e., deciding whether a
given regex can match a given word, is NP-complete (even for strongly restricted variants) [1, 3,
4], and decision problems like inclusion, equivalence and universality are undecidable [5] (even
if the input expressions only use one variable with only a bounded number of occurrences).
Nevertheless, regular expression libraries of almost all modern programming languages (like,
e. g., Java, PERL, Python and .NET) support backreferences (although they syntactically and
even semantically slightly differ from each other (see the discussion in [6])).

The general NP-completeness of the matching problem was shown in [1], but also follows
from matching patterns with variables [2], i. e., checking whether the variables xi in a pattern
α ∈ (Σ∪{xi | i ∈ N})∗ can be uniformly replaced by words from Σ∗ in order to obtain a given
word (see [8] for a recent survey). Since patterns describe a proper subclass of the class of regex
languages, hardness results (see, e. g., [3, 4]) directly carry over to regex (e. g., the matching
problem for regex is W[1]-hard, even if parameterised by the size of the regex or the size of the
word). Consequently, patterns are a quite successful tool for obtaining negative results for regex,
but the many known positive algorithmic approaches to matching patterns (see [9]) are tailored
to the “backreferencing-aspect” and seem unfit for handling the “regular expression-aspect” of
regex. In fact, even though there are many deep theoretical (yet negative) results about the
complexity and decidability of regex, positive algorithmic approaches are rather scarce.

2. Memory Automata
A suitable algorithmic framework for regex are memory finite automata (MFA for short), which
have been first introduced in [10]. Syntactically, an MFA(k) (k is the number of memories)
over an alphabet Σ is just an NFA with transition labels from Σ and {o(i),c(i), i | 1 ≤ i ≤ k}.
Σ-transitions have the usual meaning, whereas labels o(i) and c(i) are non-reading and stand
for “open memory i” and “close memory i”, respectively. In a computation, each open memory
will record the consumed input, while closed memories do nothing. Whenever a closed memory
is opened again, it will lose its previous content. The special transition labels i, 1≤ i≤ k, recall
memory i, which means that the content of the memory is consumed from the input in one
step. By using memories to simulate backreferences, regex can be transformed into equivalent

Regular Expressions with Backreferences: Polynomial-Time Matching Techniques 54

MFA. For example, x{(a∨b)∗}dx from above can be simulated by an MFA(1) that records
in the memory whatever factor is generated by the subexpression (a∨b)∗ and then recalls the
memory after reading d.

If regex are represented as MFA, their structure is much easier to analyse (i. e., in form
of a directed, edge-labelled graph). In particular, we can conveniently abstract from the ac-
tual backreferences by interpreting an MFA as an NFA that accepts a regular language over
the alphabet Σ∪ {o(i),c(i), i | 1 ≤ i ≤ k}; in this way, a regex even directly translates into
a normal regular expression. For example, regex s from above can be seen as the regu-
lar expression o(x)(a∨b)∗c(x)dx that generates words like o(x) a c(x) dx, o(x) aba c(x) dx,
o(x) bbab c(x) dx and so on (obviously, the actual regex language can be obtained from this
regular language by replacing variable occurrences x with the corresponding words enclosed in
o(x) . . .c(x), which is exactly what an MFA does “on-the-fly” in a computation).

3. Our Contribution
We develop two different approaches to efficient regex matching:
Regex with bounded active variable degree: We define a complexity parameter of regex,
called active variable degree (denoted by avd(α)). Intuitively speaking, this parameter mea-
sures the number of variables that can be active at the same time in a match, and the algorithmic
application relies on devising a matching procedure, which, in a sense, reuses variables that are
currently not active.

Theorem 3.1 Regex with bounded active variable degree can be matched in polynomial-time.

This approach can also be seen as a technique to reduce the number of variables of a regex, a
problem that, in its general form, is undecidable (see [5]).
Memory-deterministic regex: A classical regular expression is called deterministic if it di-
rectly translates into a deterministic automaton (like a(ba)∗, but unlike (ab)∗a). This classical
concept has intensively been researched. Recently, deterministic regular expressions have been
extended by backreferences in order to define deterministic regex (det-regex for short) [6]. For
example, x{(a∨b)∗}x is not deterministic, but x{(a∨b)∗}cx is. While det-regex have several
desirable properties, they seem unnecessarily restricted if efficient matching is our main con-
cern. For example, every non-deterministic classical regular expression, which can be matched
efficiently by standard techniques, is also not a det-regex and, as shown in [6], the class of det-
regex does not even cover all regular languages. In fact, any “non-deterministic fragment” like
(ab)∗a immediately makes a regex non-deterministic, even though it might be rather harmelss
with respect to the matching complexity. Consider for example the non-deterministic regex
x{(ab)∗a}y{c+x}y. In all the non-deterministic computational branches of the corresponding
MFA the already consumed prefix of the input and the contents of the memories are always the
same, the only difference is whether the last consumed a is the first or the second one of the
subexpression (ab)∗a. On the other hand, the non-determinism of a∗x{a∗}y{a∗}xy is much
more problematic: the many different ways of how occurrences of a can be stored in the mem-
ories immediately lead to a combinatorial explosion of computational branches (also note that
depending on the memory contents, the different computations consume different prefixes of

Regular Expressions with Backreferences: Polynomial-Time Matching Techniques 55

the remaining input once memories are recalled). Hence, non-determinism seems only prob-
lematic with respect to how memories are used, but can be handled if it is somehow limited to
just branching the computations into several states.

Formalising this intuitive idea turns out to be quite challenging on a technical level. We
define memory-deterministic regex, which enforce some synchronisation between the different
computational branches of the corresponding MFA.

Theorem 3.2 Memory-deterministic regex can be matched in time O(|w||r|3(|Σ|+k)), wherew
is the word, r the regex, Σ the alphabet and k the number of backreferences. Checking whether
a given regex r is memory-deterministic can be done in time O(|r|5).
Lower bounds: The active variable degree can be improved to a stronger complexity parameter
(that also might be exploited in similar ways), but computing it is coNP-hard. Even rather strong
restrictions of non-determinism will lead to intractability, as long as these restrictions are of a
local and syntactical nature. This observation leads to a regex-property that is is sufficient for
efficient matching, but coNP-hard to be checked for. The concept of memory determinism
results from finding a balance between matching- and checking-complexity.

References
[1] A. V. AHO, Algorithms for Finding Patterns in Strings. In: Handbook of Theoretical Computer

Science, Volume A: Algorithms and Complexity (A). 1990, 255–300.

[2] D. ANGLUIN, Finding Patterns Common to a Set of Strings. J. Comput. Syst. Sci. 21 (1980) 1,
46–62.

[3] H. FERNAU, M. L. SCHMID, Pattern matching with variables: A multivariate complexity analysis.
Information and Computation (I&C) 242 (2015), 287–305.

[4] H. FERNAU, M. L. SCHMID, Y. VILLANGER, On the Parameterised Complexity of String Mor-
phism Problems. Theory of Computing Systems (ToCS) 59 (2016) 1, 24–51.

[5] D. D. FREYDENBERGER, Extended Regular Expressions: Succinctness and Decidability. Theory
of Computing Systems (ToCS) 53 (2013) 2, 159–193.

[6] D. D. FREYDENBERGER, M. L. SCHMID, Deterministic regular expressions with back-references.
J. Comput. Syst. Sci. 105 (2019), 1–39.
https://doi.org/10.1016/j.jcss.2019.04.001

[7] S. KLEENE, Representation of events in nerve nets and finite automata. In: C. SHANNON, J. MC-
CARTHY (eds.), Automata Studies. Annals of Mathematics Studies 34, Princeton University Press,
1956, 3–41.

[8] F. MANEA, M. L. SCHMID, Matching Patterns with Variables. CoRR abs/1906.06965 (2019).
http://arxiv.org/abs/1906.06965

[9] D. REIDENBACH, M. L. SCHMID, Patterns with bounded treewidth. Information and Computation
(I&C) 239 (2014), 87–99.

[10] M. L. SCHMID, Characterising REGEX languages by regular languages equipped with factor-
referencing. Information and Computation (I&C) 249 (2016), 1–17.

	Preamble
	Cover

	Conference Program
	Thursday, September 26
	Invited Talk, 9:00–10:00h
	Session 1, 10:30–11:30h
	On Solution Sets of Word Equations
	On Iterated Uniform Finite-State Transducers
	Semirecognizable Sets and Right One-Way Jumping Finite Automata

	Session 2, 11:40–12:40
	Tree Substitution Grammars
	Average Case Analysis of Leaf-Centric Binary Tree Sources
	Generating Hypergraph Languages by (Context-dependent) Fusion Grammars and Splitting/Fusion Grammars

	Invited Talk, 14:00–15:00h
	Session 3, 15:30–16:30h
	Structural Sparsity
	Balancing Straight-Line Programs
	Decidability and Complexity of ALCOIF with Transitive Closure

	Session 4, 16:40–17:40h
	Tissue P Systems with Anti-Cells
	Accepting Networks of Evolutionary Processors with Resources Restricted Filters
	How are Eulerian trails connected to formal languages?

	Invited Talk, 9:00–10:00h

	Friday, September 27
	Session 5, 10:30–11:30h
	Erweiterungen zu kleinen synchronisierenden Wörtern
	Computational Complexity of Synchronization under Regular Constraints
	Eigenschaften und Zustandskomplexität kommutativer regulärer Sprachen

	Session 6, 11:40–12:40
	Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number
	Separating Languages of Infinite Words in the Mostowski Hierarchy
	Regular Expressions with Backreferences: Polynomial-Time Matching Techniques

