Theorietage 2018

76. Workshop tiber Algorithmen und Komplexitat

28. Theorietag tiber Automaten und Formale
Sprachen

Proceedings

Lutherstadt Wittenberg
24.-27.9.2018

Klaus Reinhardt — Ludwig Staiger — Renate Winter
(Hrsg.)

Technical Report No. 18-1 September 2018

Vorwort

Theorietage haben eine lange Tradition bei verschiedenen Fachgruppen der
Gesellschaft fiir Informatik (GI). Die seit 1991 jdhrlich stattfindenden Theo-
rietage zu Automaten und Formalen Sprachen wurden bereits in den Jahren
2002 und 2009 in Wittenberg organisiert.

Im Jahr 2015 fand der der 70. Workshop iiber Algorithmen und Kom-
plexitédt in Speyer zusammen mit dem 25. Theorietag Automaten und For-
male Sprachen statt. Dieses Ereignis zum Vorbild nehmend, finden in die-
sem Jahr beide Tagungen erneut gemeinsam statt. Bereits zum dritten Mal
wurde die Leucorea, eine Stiftung des o6ffentlichen Rechts an der Martin-
Luther-Universitit Halle-Wittenberg, als Veranstaltungsort in der Luther-
stadt Wittenberg gewihlt.

Es folgten 43 Teilnehmer aus Deutschland, Osterreich, Polen, Russland
und Siid Afrika der Einladung. Das wissenschaftliche Programm enthilt 4
eingeladene Vortriage, 11 Vortrage zum Workshop iiber Algorithmen und
Komplexitéit und 16 Vortrige zum Theorietag tiber Automaten und Forma-
le Sprachen. Die von von den Fachgruppen Algorithmen und Komplexitét
eingeldenen Vortragen sind:

Henning Fernau und Wojciech Plandowski.

Volker Diekert und Mikhail Volkov

sind die von der Fachgruppe Automaten und Formalen Sprachen einge-
ladenen Vortragenden.

Die Kurzfassungen der Vortrige zum Workshop und Theorietag sind
im vorliegenden Tagungsband enthalten. Aulerdem finden Sie hier die Pro-
gramme.

Der Gesellschaft fiir Informatik sowie der Stiftung Leucorea gebiihren
Dank fiir die Unterstiitzung des Theorietages. Allen Teilnehmenden wiinschen
wir einen interessanten und erfolgreichen Theorietag sowie einen angeneh-
men Aufenthalt in der Lutherstadt Wittenberg.

K. Reinhardt
L. Staiger

R. Winter Halle und Wittenberg, im September 2018

Programm des Workshops

Algorithmen und Komplexitét

Montag, 24.September 2018, Auditorium Maxi-
mum (im Erdgeschoss)

09.25 Uhr: Begriilung der Teilnehmer zum Workshop

09.30 — 10.00 Uhr: Stefan Walzer:
Practical Constant-Time Retrieval with Polynomially-small Slack

10.00 — 10.30 Uhr: Katrin Casel:
The Minimal Extension of a Partial Solution

10.30 — 11.00 Uhr: Kaffeepause

11.00 — 11.30 Uhr: Niels Griittemeier:
Triadic Closures with Multiple Relationship Types

11.30 — 12.00 Uhr: Anne-Sophie Himmel:
Listing All Maximal k-Plexes in Temporal Graphs

12.00 — 12.30 Uhr: André Nichterlein:
Exact Algorithms for Finding Well-Connected 2-Clubs in Sparse Real-
World Graphs: Theory and Experiments

12.30 — 14.00 Uhr: Mittagspause

14.00 — 14.30 Uhr: Malte Renken:
Finding Vertex Separators on Temporal Unit Interval Graphs

14.30 — 15.00 Uhr: Markus L. Schmid:
Consensus Strings with Small Maximum Distance and Small Distance
Sum

15.00 — 15.30 Uhr: Matthias Bentert:
Tree Containment with Soft Polytomies

15.30 — 16.00 Uhr: Kaffeepause

ii

16.00 — 16.30 Uhr: Arne Meier:
Enumeration in Incremental FPT-Time

16.30 — 17.00 Uhr: Holger Spakowski:
The Robustness of LWPP and WPP, with an Application to Graph
Reconstruction

17.00 — 17.30 Uhr: Rudolf Freund:
Activation and Blocking of Rules and Graph Control

Programm der eingeladenen Vor-
trage

Dienstag, 25.September 2018, Auditorium Maxi-
mum (im Erdgeschoss)

09.25 Uhr: Begriilung der Teilnehmer zum Workshop

09.30 — 10.30 Uhr: Henning Fernau:
Komplexitétstheorie bei Formalen Sprachen

10.30 — 11.00 Uhr: Kaffeepause

11.00 — 12.00 Uhr: Wojciech Plandowski:
Word Equations and Compression

12.00 — 13.30 Uhr: Mittagspause

13.30 — 14.30 Uhr: Volker Diekert:
Word Equations in SL(2, Z)

14.30 — 15.30 Uhr: Mikhail Volkov:
Completely Reachable Automata: An Interplay Between Semigroups,
Automata, and Trees

15.30 — 16.00 Uhr: Kaffeepause
16.00 — 17.00 Uhr: Open Problem Session, Seminarraum 1.0G

17.15 — 19.00 Uhr: Fachgruppensitzung AFS, Seminarraum 1.0G

iv

Programm des Theorietags

Automaten und Formale Sprachen

Mittwoch, 26.September 2018, Seminarraum 1.0G

09.25 Uhr: Begriilung der Teilnehmer zum Theorietag

09.30 — 10.00 Uhr: Florin Manea:
The Satisfiability of Word Equations: Decidable and Undecidable Theo-
ries

10.00 — 10.30 Uhr: Andreas Malcher:
Iterative Arrays with Bounded Communication

10.30 — 11.00 Uhr: Kaffeepause

11.00 — 11.30 Uhr: Florin Manea: Exact and Approximated Compu-
tation of the Locality Number of Words

11.30 — 12.00 Uhr: Erik Paul:
On Ambiguity of Max-Plus Tree Automata

12.00 — 12.30 Uhr: Andreas Maletti:
Composition Hierarchies of Linear Wighted Extended Top-Down Tree
Transducers

12.30 — 14.00 Uhr: Mittagspause

14.00 — 14.30 Uhr: Stefan Diick:
Weighted Operator Precedence Languages

14.30 — 15.00 Uhr: Gustav Grabolle:
Multivalued Linear Dynamic Logic

15.00 — 15.30 Uhr: Sven Dziadek:
w-Pushdown Automata

15.30 — 16.00 Uhr: Kaffeepause

16.00 — 16.30 Uhr: Simon Beier:
Properties and Decidability of Right One-way Jumping Finite Auto-
mata

16.30 — 17.00 Uhr: Chris Kdocher:
Reachability Questions on Partially Lossy Queue Automata

17.00 — 17.30 Uhr: Stefan Hoffmann:
Uberlegungen zur Cerny-Vermutung

Donnerstag, 27.September 2018, Seminarraum 1.0G

09.30 — 10.00 Uhr: Jiirgen Dassow:
Kuratowski’s Closure-Complement Theorem and the Orbit of Closure-
Involution Operations

10:00 — 10.30 Uhr: Bianca Truthe:
Networks of Evolutionary Processors with Resources Restricted Filters

10.30 — 11.00 Uhr: Kaffeepause

11.00 — 11.30 Uhr: Johannes Waldmann:
One-Dimensional Tiling Systems and String Rewriting

11.30 — 12.00 Uhr: Rudolf Freund:
Unfair P Systems

12.00 — 12.30 Uhr: Dominikus Heckmann:
Half-Terminal Grammars (HTG): A Formal Two-stage Structured String
Derivation and Interpretation System

Inhaltsverzeichnis

[Programm des Workshops ” Algorithmen und Komple- |

it
[Programm der eingeladenen Vortrige) vl

[Programm des Theorietags ” Automaten und Formale Spra- |

ichen”] \

|1 Practical Constant-Time Retrieval with Polynomially-small Slack] .
Martin Dietzfelbinger, Stefan Walzer

2 The Minimal Extension of a Partial Solution|
Katrin Casel

|3 Triadic Closures with Multiple Relationship Types| §
Laurent Bulteau, Niels Griittemeier, Christian Komusiewicz, Ma-
nuel Sorge
4 Listing All Maximal k-Plexes in Temporal Graphs| ird|

Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco

Morik, Rolf Niedermeier, René Saitenmacher

|5 Exact Algorithms for Finding Well-Connected 2-Clubs in Sparse |
| Real-World Graphs: Theory and Experiments| 8
Christian Komusiewicz, André Nichterlein, Rolf Niedermeier,
Marten Picker

|6 Finding Vertex Separators on Temporal Unit Interval Graphs| . . .
Malte Renken

|7 Consensus Strings with Small Maximum Distance and Small Di-

L_stance Suml 10
Laurent Bulteau, Markus L. Schmid

[Tree Containment with Soft Polytomies 14
Matthias Bentert, Josef Malik, Mathias Weller

9__Enumeration in Incremental FPT-Timel 15]
Arne Meier

|10 The Robustness of LWPP and WPP, with an Application to Graph |

[Reconstruction]
Edith Hemaspaandra, Lane A. Hemaspaandra, Holger Spakow-

ski, Osamu Watanabe

[IT Activation and Blocking of Rules and Graph Control I8
Rudolf Freund

|12 Komplexititstheorie bei Formalen Sprachen|
Henning Fernau

(13 Equations in SL(2,Z)[. oo 29
Volker Diekert

|14 Completely Reachable Automata: An Interplay Between Semigroups, |

[Automata, and Trees|.
E. A. Bondar and M. V. Volkov

[15 The Satisfiability of Word Equations: Decidable and Undecidable |

[CTheoried« o o oo 37

Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, Dirk No-

wotka

[16 Iterative Arrays with Bounded Communication|
Andreas Malcher

|17 Exact and Approximated Computation ot the Locality Number ot

CWords . - - o o e 43

Joel D. Day, Pamela Fleischmann, Florin Manea, Markus L.
Schmid

[18 On Ambiguity of Max-Plus Tree Automatal 47
Erik Paul

[19 Composition Closure of Linear Weighted Extended Top-Down 'Tree |

L Transducers| 50!
Zoltan Fiilop, Andreas Maletti

20 Weighted Operator Precedence Languages|
Manfred Droste, Stefan Diick, Dino Mandrioli, Matteo Pradella

21 Bimonoid Weighted Linear Dynamic Logic|. 58]
Gustav Grabolle

22 w-Pushdown Automatal 62
Manfred Droste, Sven Dziadek, Werner Kuich

[23 Properties and Decidability of Right One-Way Jumping Finite Au- |

[fomafal.
Simon Beier, Markus Holzer

[24 Uberlegungen zur Cerny-Vermutung| ird0)
Stefan Hoffmann

[25 Reachability Questions on Partially Lossy Queue Automatal [l

Chris Kocher

26 Kuratowski’s Complement-Closure Theorem and the Orbit of Closure- |

[Tnvolution Operations| [74

Jiirgen Dassow

27 Networks of Evolutionary Processors with Resources Restricted |

Bianca Truthe

[28 One-Dimensional Tiling Systems and String Rewriting|]2
Alfons Geser, Dieter Hofbauer, Johannes Waldmann

29 Unfair P Systems| oL RT
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov

[30 Half-Terminal Grammars (HTG): A Formal Two-stage Structured |

| String Derivation and Interpretation System|. 91

Dominikus Heckmann

’7/77"50 RIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 1-4.

Practical Constant-Time Retrieval
with Polynomially-small Slack

Martin Dietzfelbinger* Stefan Walzer'?)

(4) martin. dietzfelbinger@tu-ilmenau.de

(B) stefan.walzer@tu-ilmenau.de

Zusammenfassung

Let U be some universe and E' C U/ a set of size m = |E/, annotated with f : E — {0,1}.
Our goal is to obtain a data structure R = construct(F, f) and corresponding algorithm
query such that query(R,y) = f(y) for all y € E. For y € U \ E the result of query(R,y)
may be arbitrary. R should occupy only (1 +¢)m bits meaning E cannot be stored.

In this paper we present how to achieve constant query time in conjunction with € =
O(m~7) for constant -y, improving on the previous best ¢ = O((logm)~7) for constant ~.

Moreover, our techniques are highly practical. In a particular benchmark with m = 107
we achieve an order-of-magnitude improvement over previous techniques with € = 0.25%
instead of € = 3% without significant sacrifices in runtime.

We employ the framework due to [11, 3, 6], where retrieval is connected to solving
sparse linear boolean systems. Our technical contribution is to identify a family of sparse
linear systems that combine good locality properties with high probabilities of having full
rank. We then adapt the LazyGauss technique from [10] and the Method of Four Russians
to solve such systems quickly.

1. Introduction

Let U be some universe and £ C U/ an f-annotated set of size m = |E| where f : £ — {0,1}.
Our goal is to obtain a data structure R = construct(F, f) and corresponding algorithm query
such that query(R,y) = f(y) for all y € E. For y € U \ E the result of query(R,y) may be
arbitrary. For instance, let i/ = {a,...,z}* be the universe of strings and £ C U the set of given
names annotated with their gender! f : E — {0 = male, 1 = female}. The query operation must
correctly reproduce the correct gender for any given name, but need not be able to distinguish
given names from other strings and may return either male or female when presented with a
string that is not in F.

Clearly, this problem can be solved with a dictionary data structure: Find a hash function
h:U — {0,1}90e(m)) that is injective on E and save the hashes h(y) of all female names in
a hashtable 7'. Then we can define query(R = (h,T),y) := 1j(y)er- If the fraction of female
names in F is O(1) this requires O(mlogm) bits of memory. However, in this paper the goal is
m +em bits for a slack € = o(1).

IThis example is due to [9].

2 Martin Dietzfelbinger, Stefan Walzer

All retrieval data structures from the literature fit a general framework due to [11, 3, 6]: Pick
a random hash function h : U — S, where S C {0,1}" is a set of (typically sparse) vectors and
n = (14 ¢)m. Then solve the linear system ((h(y),Z) = f(y)),cp for & € {0,1}. Here, (-,-)
denotes the scalar product in the vector space F5. If successful, R = (h,) forms the retrieval
data structure with query(R,y) := (h(y),Z). Simple pseudo-code is given in Figure 2 and an
example in Figure 1. Neglecting the space to save h, the data structure R occupies (1 +¢)m
bits.

Input Hash Values

(Ana,1) h(Ana)=(1,3,9) /101000001 1
(Bea,1) h(Bea)=(2,3,4) [011100000 I
(cal,0) h(cal)=(3,6,8) [001001010]| _ |0
(Dan,0) h(Dan)=(5,8,9) [000010011[“~ |0
(E11,0) h(Eve)=(2,8,9) (010000011 0
(Fen,1) h(Fen)=(1,5,6) \100011000 1

Figure 1: The input consists of m = 6 names annotated with 1 for “female” and O for “male”. Each name
is mapped via h to 3 numbers that are interpreted as an n = 9 bit vector with 1s in the corresponding
positions. The resulting linear system has a solution & = (1,0,0,1,0,0,0,0,0)” and R = (h,¥) forms a
retrieval data structure for the input.

Algorithm construct(E CU, f: E— {0,1}):
pick h: E— S C {0,1}1+2)IF
solve ((h(y), %) = f(y))yep for &
restart if Z does not exist
return R = (h,7)

Algorithm query(R = (h,Z),y € U):
L return (h(y),Z)

Figure 2: The general framework for retrieval data structures. The vectors in S are typically sparse.
Linear system solver and query algorithm should exploit this.

There are three degrees of freedom in this framework:
(F1) What is the set S of sparse vectors that is the image of h?
(F2) Which solver for the linear system is used?

(F3) How, if at all, do we partition the input to reduce the runtime of the solver?

2. Contribution

Our main contribution is to propose and analyse a new answer to (F1) namely using vectors
with coefficients within two blocks. More precisely, let £ € N be a block size that divides n.
Then v € S is determined by two random block indices b; < by € {1,...,n/¢} and two random
patterns py,ps € {0, 1} as v = 0%1=Lp, 0/ b2=01)=0)y)) on—Lb2

Practical Constant-Time Retrieval with Polynomially-small Slack 3

Concerning (F2), we adapt the LazyGauss approach by [10] to our situation which turns
our large sparse linear system into a significantly smaller dense linear system. The remaining
system is solved with the Method of Four Russians and broad word programming. Together
with a standard answer to (F3), we obtain:

Theorem 2.1 (Main Theorem) Assume the context of a Word-RAM with word length w and
access to fully random hash functions >. Then, for any chunk size C' = m® (0 < o < 1), there

is a retrieval data structure with a slack of ¢ = C~0 + lo%m =m~ (for some constant 0),
. . mC? .
construction time O (i gc) and query time O(1).

This is a significant theoretical improvement as previously query cost O(1) required a slack
of £ =log(m)~7 for constant and, conversely, a slack of ¢ = m™" for constant required
query cost O(logm).

Our approach also performs very well in practice as shown in Table 1.

Slack Construction [us/key] Lookup [ns]

[10] k=3 9% 1.12 210
[101k=4 3% 1.75 236
(this paper) 0.24% 2.6 75-125

Table 1: Comparison of our algorithm to the arguably best-so-far results [10]. We achieve much smaller
slack with comparable run times.

Literatur

[1] M. AUMULLER, M. DIETZFELBINGER, M. RINK, Experimental Variations of a Theoretically
Good Retrieval Data Structure. In: Proc. 17th ESA. 2009.

[2] G. V. BARD, The Method of Four Russians. Springer US, Boston, MA, 2009.

[3] F. C. BOTELHO, Near-Optimal Space Perfect Hashing Algorithms. Ph.D. thesis, Federal University
of Minas Gerais, 2008.
http://homepages.dcc.ufmg.br/“fbotelho/en/pub/thesis.pdf

[4] F. C. BOTELHO, Y. KOHAYAKAWA, N. ZIVIANI, A Practical Minimal Perfect Hashing Method.
In: Proc. 4th WEA. 2005.

[5] F. C. BOTELHO, R. PAGH, N. Z1VIANI, Simple and Space-Efficient Minimal Perfect Hash Func-
tions. In: Proc. 10th WADS. 2007.

[6] F. C. BOTELHO, R. PAGH, N. ZIVIANI, Practical Perfect Hashing in Nearly Optimal Space. Inf.
Syst. (2013).

ZFor any universe U and any finite domain D we assume oracle access to fully random functions (h; : U —
D);en, meaning we need to only store an index ¢ to describe such a function. This assumption is motivated by
the observation that good (pseudo-)randomness is usually not an issue in practice. In our experiments we use
MurmurHash.

Martin Dietzfelbinger, Stefan Walzer

[7]

[9]

(10]

(1]

(12]

[13]

N. J. CALKIN, Dependent Sets of Constant Weight Binary Vectors. Combinatorics, Probability
and Computing (1997).
http://journals.cambridge.org/article_S0963548397003040

C. COOPER, On the rank of random matrices. Random Structures & Algorithms 16 (2000) 2, 209—
232.

M. DIETZFELBINGER, R. PAGH, Succinct Data Structures for Retrieval and Approximate Mem-
bership (Extended Abstract). In: Proc. 35th ICALP (1). 2008.

M. GENUZzIO, G. OTTAVIANO, S. VIGNA, Fast Scalable Construction of (Minimal Perfect Hash)
Functions. In: Experimental Algorithms - 15th International Symposium, SEA 2016, St. Petersburg,
Russia, June 5-8, 2016, Proceedings. 2016, 339-352.
https://doi.org/10.1007/978-3-319-38851-9_23

B. S. MAJEWSKI, N. C. WORMALD, G. HAVAS, Z. J. CZECH, A Family of Perfect Hashing
Methods. Comput. J. (1996).

E. PORAT, An Optimal Bloom Filter Replacement Based on Matrix Solving. In: Proc. 4th CSR.
2009.

D. H. WIEDEMANN, Solving Sparse Linear Equations Over Finite Fields. IEEE Transactions on
Information Theory (1986).

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 5-5.

The Minimal Extension of a Partial Solution
Katrin Casel®

(4)Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

casel@informatik.uni-trier.de

Abstract

The very general problem of determining the quality of a given partial solution occurs
basically in every algorithmic approach which computes solutions in some sense gradually.
Pruning search-trees, proving approximation guarantees or the efficiency of enumeration
strategies usually requires a suitable way to decide if a partial solution is a reasonable
candidate to pursue. Consider for example the classical concept of minimal dominating
sets for graphs. The task of finding a maximum cardinality minimal dominating set (or
an approximation of it) as well as enumerating all minimal dominating sets naturally leads
to solving the following extension problem: Given a graph G = (V, F) and a vertex set
P CV, does there exists a minimal dominating set S with P C S.

In an attempt to study the nature of such extension tasks, we propose a general, partial-
order based framework to express a broad class of what we refer to as extension problems.
In essence, we consider optimisation problems in NPO with an additionally specified set
of presolutions (including the solutions) and a partial order on those. This partial order <
reflects not only the notion of extension but also of minimality as follows. For a presolu-
tion P and a solution S, S extends P if P < S. A solution S is minimal, if there exists no
solution S’ # S with S’ < S. The resulting extension problem is then formally the task to
decide for a given presolution P, if there exits a minimal solution .S which extends P.

We consider a number of specific problems which can be expressed in this framework.
Possibly contradicting intuition, these problems tend to be NP-hard, even for problems
where the underlying optimisation problem can be solved in polynomial time. This raises
the question of how fixing a presolution causes this increase in difficulty. In this regard,
we study the parameterised complexity of extension problems with respect to parameters
related to the presolution. We further discuss relaxation of the extension constraint asking
only for a solution S which extends some presolution P’ < P. Here we do not want just
any such presolution P’ but we want P’ to be as close to P as possible, in the sense that
there exits no presolution P’ # P’ with P’ < P"” < P which can also be extended. These
considerations yield some insight into the difficult aspects of extension problems.

(4)

Based on joint work with Henning Fernau, Mehdi Khosravian, Jérome Monnot and Florian Sikora.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 6-6.

Triadic Closures with Multiple Relationship Types

Laurent Bulteau® Niels Griittemeier’” Christian Komusiewicz®

Manuel Sorge'©
(4)Laboratoire d’Informatique Gaspard Monge, France
laurent.bulteau@u-pem.fr

(B)Philipps-Universitit Marburg, Germany

{niegru,komusiewicz}@informatik.uni-marburg.de

(©)Warsaw University, Poland

manuel.sorge@gmail.com

Zusammenfassung

In MULTI STRONG TRIADIC CLOSURE we aim to label the edges of an undirected
graph G = (V, E)) with strong colors 1,...,c and a weak color w such that at most & edges
are weak and G contains no induced P3 with two edges of the same strong color class.
This problem is a generalisation of the previously studied STRONG TRIADIC CLOSURE,
which is the special case where ¢ = 1. The different edge colors model different types of
relationships between agents in a social network.

This talk summarizes recent results on the classic and parameterized complexity and
problem kernelization of MULTI STRONG TRIADIC CLOSURE and further generalizations
of the problem. For example we consider the case where for each edge a set of possible
strong colors is given.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 7-7.

Listing All Maximal k-Plexes in Temporal Graphs

Matthias Bentert ~ Anne-Sophie Himmel®W Hendrik Molter'®
Marco Morik Rolf Niedermeier =~ René Saitenmacher

Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
{anne-sophie.himmel, matthias.bentert, h.molter, rolf.niedermeier}@tu-berlin.de

{marco.t.morik, r.saitenmacher}@campus.tu-berlin.de

Zusammenfassung

Many real-world networks evolve over time, that is, new contacts appear and old con-
tacts may disappear. They can be modeled as temporal graphs where interactions bet-
ween vertices (in case of social networks these would represent people) are represented
by time-stamped edges. One of the most fundamental problems in (social) network analy-
sis is community detection, and one of the most basic primitives to model a community
is a clique. Addressing the problem of finding communities in temporal networks, Viard
et al. [TCS 2016] introduced A-cliques as a natural temporal version of cliques. Himmel
et al. [SNAM 2017] showed how to adapt the well-known Bron-Kerbosch algorithm to
enumerate A-cliques. We continue this work and improve and extend this algorithm to enu-
merate temporal k-plexes (notably, cliques are the special case k = 1).

We define a A-k-plex as a set of vertices with a lifetime, where during the lifetime each
vertex has an edge to all but at most k£ — 1 vertices at least once within any consecuti-
ve A+ 1 time steps. We develop a recursive algorithm for enumerating all maximal A-k-
plexes and perform experiments on real-world social networks that demonstrate the feasi-
bility of our approach. In particular, for the special case of A-1-plexes (that is, A-cliques),
we observe that our algorithm is significantly faster than the previous algorithm by Himmel
et al. [SNAM 2017] for enumerating A-cliques.

Full Version on Arxiv: https://arxiv.org/abs/1806.10210

(4)Supported by the DFG, projects DAMM (NI 369/13) and FPTinP (NI 369/16).
(B)Supported by the DFG, project MATE (NI 369/17).

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 8-8.

Exact Algorithms for Finding
Well-Connected 2-Clubs in Sparse Real-World
Graphs: Theory and Experiments

Christian Komusiewicz”) André Nichterlein®® Rolf Niedermeier®
Marten Picker®

(4)Fachbereich Mathematik und Informatik, Philipps-Universitdt Marburg, Germany

komusiewicz@informatik.uni-marburg.de

(B)Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

{andre.nichterlein,rolf.niedermeier}@tu-berlin.de

Abstract

Finding (maximum-cardinality) “cliquish” subgraphs is a central topic in graph mining
and community detection. A popular clique relaxation are 2-clubs: instead of asking for
subgraphs of diameter one (these are cliques), one asks for subgraphs of diameter at most
two (these are 2-clubs). A drawback of the 2-club model is that it produces hub-and-spoke
structures (typically star-like) as maximum-cardinality solutions. Hence, we study 2-clubs
with the additional constraint to be well-connected. More specifically, we investigate the
algorithmic complexity for three variants of well-connected 2-clubs, all established in the
literature: robust, hereditary, and “connected” 2-clubs. Finding these more dense 2-clubs
is NP-hard; nevertheless, we develop an exact combinatorial algorithm, extensively using
efficient data reduction rules. Besides several theoretical insights we provide a number
of empirical results based on an engineered implementation of our exact algorithm. In
particular, the algorithm significantly outperforms existing algorithms on almost all (sparse)
real-world graphs we considered.

The talk is based on the following paper https://arxiv.org/abs/1807.07516

Parts of this work are based on the last author’s master thesis. Work started when all authors were with TU
Berlin.
(A)CK was partially supported by the DFG, project MAGZ (KO 3669/4-1).

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 9-9.

Finding Vertex Separators on Temporal Unit Interval
Graphs

Malte Renken

(A)TU—Berlin,
10623 Berlin Ernst-Reuter-Platz 7 m.renken@tu-berlin.de

Abstract

Let a number of particles on the real line be given, that may move over time. Assume
that two particles can exchange information only if they are within proximity of each other.
Our goal is to prevent the spread of information from a given source to a given destination
by removal of a minimum number of particles. We investigate this problem by modeling it
as a temporal (that is time-varying) graph, obtaining hardness results in general as well as
a fixed-parameter-tractable algorithm for appropriately chosen parameters.

’7/'5E0R1E_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 10-13.

Consensus Strings with Small Maximum Distance and
Small Distance Sum

Laurent Bulteau® Markus L. Schmid®

(A Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,
Marne-la-Vallée, France, laurent.bulteau@u-pem.fr

(B)Fachbereich 4 — Abteilung Informatikwissenschaften, Universitét Trier, 54286 Trier,

Germany, mlschmid@mlschmid.de

Abstract

This is a summary of the results presented in [4], in which the parameterised complex-
ity of consensus string problems (CLOSEST STRING, CLOSEST SUBSTRING, CLOSEST
STRING WITH OUTLIERS) is investigated in a more general setting, i.e., with a bound on
the maximum Hamming distance and a bound on the sum of Hamming distances between
solution and input strings.

1. Problem Definition

Let X be a finite alphabet, £* be the set of all strings over X, including the empty string £ and
Yt =3%*\{e}. For w € £*, |w| is the length of w and, for every i, 1 < i < |w]|, by w[i], we
refer to the symbol at position ¢ of w. For every n € NU{0}, let X" = {w € X* | |w| = n}
and X" = Uy Y, By =, we denote the substring relation over the set of strings, i.e., for
u,v € L*, u=wv if v = zuy, for some x,y € L*. We use the concatenation of sets of strings as
usually defined, i.e., for A, B CX*, A-B={uv|u€ A,v € B}.

For strings u,v € £* with |u| = |v|, dy(u,v) is the Hamming distance between u and v.
For a multi-set S = {u; | 1 <i<n} C ! and a string v € ¥!, for some ¢ € N, the radius of S
(w. 7. t. v) is defined by ry(v, S) = max{dy(v,u) | u € S} and the distance sum of S (w. r. t. v) is
defined by sy (v,S) = ¥,ecgdn(v,u).! Next, we state the problem (r,s)-CLOSEST STRING in
full detail, from which we then derive the other considered problems:

(r,s)-CLOSEST STRING
Instance: Multi-set S = {s; | 1 <i <k} C ¥¢, ¢ € N, and integers d,.,d, € N.
Question: Is there an s € X¢ with ry(s,S) < d, and sy(s, S) < dy?

For (r,s)-CLOSEST SUBSTRING, we have S C =¢ and an additional input integer m € N, and
we ask whether there is a multi-set S" = {s} | s, <s;,1 <i <k} CE™ with ry(s,S”) <d, and
su(s,S") < ds. For (r,s)-CLOSEST STRING WITH OUTLIERS (or (r,s)-CLOSEST STRING-WO

'We slightly abuse notation with respect to the subset relation: for a multi-set A and a set B, A C B means
that A’ C B, where A’ is the set obtained from A by deleting duplicates; for multi-sets A, B, A C B is defined as
usual. Moreover, whenever it is clear from the context that we talk about multi-sets, we also use the term set.

Consensus Strings with Small Maximum Distance and Small Distance Sum 11

for short) we have an additional input integer ¢ € N, and we ask whether there is a multi-set S” C
S with | S| = k—t such thatry (s, S) < d, and sy(s,S") < ds. We also call (r,s)-CLOSEST STRING
the general variant of CLOSEST STRING, while (r)-CLOSEST STRING and (s)-CLOSEST STRING
denote the variants, where the only distance bound is d, or dg, respectively; we shall also call
them the (r)- and (s)-variant of CLOSEST STRING. Analogous notation apply to the other
consensus string problems. The problem names that are also commonly used in the litera-
ture translate into our terminology as follows: CLOSEST STRING = (r)-CLOSEST STRING,
CLOSEST SUBSTRING = (r)-CLOSEST SUBSTRING, CONSENSUS PATTERNS = (s)-CLOSEST
SUBSTRING and CLOSEST STRING-WO = (r)—CLOSEST STRING-WO.

For any problem K, by K(p1,p2,...), we denote the variant of K parameterised by the
parameters pp,pa,.... For unexplained concepts of parameterised complexity, we refer to the
textbooks|[5, 6, 9].

The consensus string problems have many natural parameters: the number of input strings
k, their length ¢, the radius bound d,, the distance sum bound d, the alphabet size |¥|, the sub-
string length m (in case of (r,s)-CLOSEST SUBSTRING), the number of outliers ¢ and inliers
k —t (in case of (r,s)-CLOSEST STRING-WO). The parameterised complexity (w.r. t. these pa-
rameters) of the radius as well as the distance sum variant of CLOSEST STRING and CLOSEST
SUBSTRING has been settled by a sequence of papers (see [11, 7, 8, 10, 12] and, for a sur-
vey, [3]), except (s)-CLOSEST SUBSTRING with respect to parameter ¢, which is settled here.
The parameterised complexity analysis of the radius variant of CLOSEST STRING WITH OUT-
LIERS has been started more recently in [2] and, to the knowledge of the authors, the distance
sum variant has not yet been considered.

The parameterised complexity of the general variants, where we have a bound on both the
radius and the distance sum, has not yet been considered in the literature. While there are
obvious reductions from the (r)- and (s)-variants to the general variant, these three variants
describe, especially in the parameterised setting, rather different problems.

2. Results

Our main result is that the branching algorithm from [11] (extended in [13] and [2]) can be
extended (in a non-trivial way) to obtain the following:

Theorem 2.1 (r,s)-CLOSEST STRING-WO(d,,t) € FPT.

In addition to this positive result, we can prove the following hardness results:

Theorem 2.2 (s)-CLOSEST STRING-WO(ds, ¢,k —t) and (s)-CLOSEST SUBSTRING({,m) is
WI(1]-hard.

Finally, by a cross-composition from (r)-CLOSEST STRING into (r)-CLOSEST STRING-WO,
we can rule out a polynomial kernel for (r,s)-CLOSEST STRING-WO(d,.,ds, ¢, (k—t),|X|).

Theorem 2.3 (r,5)-CLOSEST STRING-WO(d,,ds, ¢, (k —t),|X|) does not admit a polynomial
kernel unless coNP C NP/Poly.

12 Laurent Bulteau, Markus L. Schmid

These main results, along with some less complicated extensions of known results for the
(r)- and the (s)-variants, yields the following bigger picture of the parameterised complexity of
consensus string problems (see [4] for details):

Results for (r,s)-CLOSEST STRING:

k|d | ds[|Z]] €] Result | Note/Ref.
pl- | -] - |-| FPT [4]
-lp| -] ~-1|-| FPT (4]
- -|lp| -1|-| FPT (4]
—| = | =1 2 | = | NP-hard | from (r)-variant [10]
[—|p| FPT [4]
Results for (r,s)-CLOSEST STRING-WO, including (r)- and (s)-variants:
(k[t][Z[]¢]d|ds[k—t] Result | Note/Ref.
pl—-| - |-|-1- - FPT [4], Open Prob. in [2]
-0 2 |-]-1|- - NP-hard even for d,.-var., but P for d-var.
-p| - |p|-|-] - FPT d, </
—-pl - |=-1p| - - FPT Thm. 2.1, and [2] for d,-var.
-p| - |-|-1pP]| - FPT [4]
—-lp| - |-|-1|- p FPT E=t+(k—t)
-l='pip| - - - FPT trivial
— =l p |- x| * * Open param. |X| and some of d,,ds,k —t
—|=| = 1|plp|p| p | W]l]hard | even for d,-var. [2] and ds-var. (Thm. 2.2)

Results for (s)-CLOSEST SUBSTRING:

| ¢ k|m]|ds||E]| Result |Reference |
-|l=-/p|-1]pP FPT trivial
Pl-|-|-|pP FPT [13]

PP - |- - FPT [13]
pl-|-/pP| - FPT [13]
-l=-|/=/P|DP FPT [12]
—Ip|—-|-1 2 | W[l]-hard (8]
-lp|p|p| - | Wl]hard 8]
p|-|p|-| - | W[]-hard | Thm. 2.2

Results for (r,s)-CLOSEST SUBSTRING:

| (k][m]d [ds[[Z]] Result | Reference
-|-/p|-]-1P FPT [4]
PP - |- |-~ FPT [4]

P - -|-|P| - FPT [4]

P - -|-]|-|P FPT [4]
p|—-|p|p |- | - | W[]-hard | [4], Open Prob. in [13]
-|p|-|p|p|p | W[hard [12]
-{p/p|p|PpP| - |W[hard 8]

Consensus Strings with Small Maximum Distance and Small Distance Sum 13

The known kernelisation results can be summarised as follows (the statement “no poly. kernel”

is under the assumption that coNP Z NP/Poly):

’ Problem

|

Kernel size

\ Reference ‘

(r,s)-CLOSEST STRING (k,d,) O(k*d,logk) | follows from [11]
(r,s)-CLOSEST STRING(d;) O((ds)*1logds) | follows from [11]
(r,s)-CLOSEST SUBSTRING(/, k) O(¢k) trivial
(r,s)-CLOSEST SUBSTRING(/,d) O(4dy) trivial
(r,s)-CLOSEST STRING(d,,/, |Z|) no poly. kernel | follows from [1]
(r,s)-CLOSEST SUBSTRING(k,m,d,,ds,|%|) no poly. kernel | follows from [1]
(r)-CLOSEST STRING-WO(d,, {,t,|Z|) no poly. kernel | follows from [1]
(r,s)-CLOSEST STRING-WO(d,,ds, !, (k—t),|Z|) | no poly. kernel | [4]

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

(12]

(13]

M. BASAVARAIU, F. PANOLAN, A. RAL, M. S. RAMANUJAN, S. SAURABH, On the Kerneliza-
tion Complexity of String Problems. In: Proc. 20th International Conference on Computing and
Combinatorics, COCOON 2014. LNCS 8591, 2014, 141-153.

C. BOUCHER, B. MA, Closest string with outliers. BMC Bioinformatics 12 (2011), S55.

L. BULTEAU, F. HUFFNER, C. KOMUSIEWICZ, R. NIEDERMEIER, Multivariate Algorithmics for
NP-Hard String Problems. Bulletin of the EATCS 114 (2014), 31-73.

L. BULTEAU, M. L. SCHMID, Consensus Strings with Small Maximum Distance and Small Dis-

tance Sum. In: Proc. 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, August 27-31, 2018, Liverpool (UK). 2018. To appear.

M. CyaGgaN, F. FoMmIN, L. KOWALIK, D. LOKSHTANOV, D. MARX, M. PILIPCZUK,
M. PILIPCZUK, S. SAURABH, Parameterized Algorithms. Springer, 2015.

R. G. DOWNEY, M. R. FELLOWS, Fundamentals of Parameterized Complexity. Texts in Computer
Science, Springer, 2013.

P. A. EVANS, A. D. SMITH, H. T. WAREHAM, On the complexity of finding common approximate
substrings. Theoretical Computer Science 306 (2003), 407-430.

M. R. FELLOWS, J. GRAMM, R. NIEDERMEIER, On The Parameterized Intractability Of Motif
Search Problems. Combinatorica 26 (2006), 141-167.

J. FLUM, M. GROHE, Parameterized Complexity Theory. Springer, 2006.

M. FRANCES, A. LITMAN, On covering problems of codes. Theory of Computing Systems 30
(1997), 113-119.

J. GRAMM, R. NIEDERMEIER, P. ROSSMANITH, Fixed-Parameter Algorithms for CLOSEST
STRING and Related Problems. Algorithmica 37 (2003), 25-42.

D. MARX, Closest Substring Problems with Small Distances. SIAM Journal on Computing 38
(2008), 1382-1410.

M. L. SCHMID, Finding Consensus Strings with Small Length Difference between Input and So-
lution Strings. ACM Transactions on Computation Theory 9 (2017) 3, 13:1-13:18.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 14-14.

Tree Containment with Soft Polytomies
Matthias BentertY Josef Malik®) Mathias Weller®

(A Institut fiir Softwaretechnik und Theoretische Informatik

TU Berlin
matthias.bentert@tu-berlin.de

(B)Department of Theoretical Computer Science

Czech Technical University
josef.malik@fit.cvut.cz

(C)CNRS, Laboratoire d’Informatique Gaspard-Monge

Université Paris Est
mathias.wellerQu-pem.fr

Zusammenfassung

The Tree Containment problem has many important applications in the study of evolu-
tionary history. Given a phylogenetic network N and a phylogenetic tree 7" whose leaves
are labeled by a set of taxa, it asks if V and 1" are consistent. While the case of binary N
and T has received considerable attention, the more practically relevant variant dealing
with biological uncertainty has not. Such uncertainty manifests itself as high-degree verti-
ces (“polytomies”) that are “jokers” in the sense that they are compatible with any binary
resolution of their children. Contrasting the binary case, we show that this problem, cal-
led Soft Tree Containment, is NP-hard, even if N is a binary, multi-labeled tree in which
each taxon occurs at most thrice. On the other hand, we reduce the case that each label oc-
curs at most twice to solving a 2-SAT instance of size O(|T’|?). This implies NP-hardness
and polynomial-time solvability on reticulation-visible networks in which the maximum
in-degree is bounded by three and two, respectively.

The full paper is available at http://drops.dagstuhl.de/opus/volltexte/2018/
8835/.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 15-15.

Enumeration in Incremental FPT-Time
Arne Meier®)

(A)Leibniz Universitit Hannover, Institut fiir Theoretische Informatik,

Appelstrasse 4, 30167 Hannover,

meier@thi.uni-hannover.de

Abstract

In this talk, we study the relationship of parametrised enumeration complexity classes
defined by Creignou et al. (MFCS 2013). Specifically, we introduce two hierarchies (In-
cFPTa and CapIncFPTa) of enumeration complexity classes for incremental fpt-time in
terms of exponent slices and show how they interleave. Furthermore, we define several
parametrised function classes and, in particular, introduce the parametrised counterpart of
the class of nondeterministic multivalued functions with values that are polynomially verifi-
able and guaranteed to exist, TFNP, known from Megiddo and Papadimitriou (TCS 1991).
We show that TF(para-NP) collapsing to F(FPT) is equivalent to OutputFPT coinciding
with IncFPT. This result is in turn connected to a collapse in the classical function setting
and eventually to the collapse of IncP and OutputP which proves the first direct connection
of classical to parametrised enumeration.

(4)Funded by the DFG grant ME 4279/1-2

’7/%0”3 K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 16-17.

The Robustness of LWPP and WPP,
with an Application to Graph Reconstruction

Edith Hemaspaandra® Lane A. Hemaspaandra®

Holger Spakowski(® Osamu Watanabe'”)
(A)Department of Computer Science

Rochester Institute of Technology
Rochester, NY 14623, USA

(B)Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

(C)Department of Mathematics and Applied Mathematics

University of Cape Town
Rondebosch 7701, South Africa

(D)Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology
Tokyo 152-8552, Japan

We show that the counting class LWPP [1] remains unchanged even if one allows a polyno-
mial number of gap values rather than one. On the other hand, we show that it is impossible to
improve this from polynomially many gap values to a superpolynomial number of gap values
by relativizable proof techniques.

The first of these results implies that the Legitimate Deck Problem (from the study of graph
reconstruction) is in LWPP (and thus low for PP, i.e., PpLegitimate Deck — pp)y if the weakened ver-
sion of the Reconstruction Conjecture holds in which the number of nonisomorphic preimages
is assumed merely to be polynomially bounded. This strengthens the 1992 result of Kobler,
Schoning, and Tordn [3] that the Legitimate Deck Problem is in LWPP if the Reconstruction
Conjecture holds, and provides strengthened evidence that the Legitimate Deck Problem is not
NP-hard.

We additionally show on the one hand that our main LWPP robustness result also holds
for WPP, and also holds even when one allows both the rejection- and acceptance- gap-value
targets to simultaneously be polynomial-sized lists; yet on the other hand, we show that for the
#P-based analog of LWPP the behavior much differs in that, in some relativized worlds, even
two target values already yield a richer class than one value does. Despite that nonrobustness
result for a #P-based class, we show that the #P-based “exact counting” class C_P remains

This work was done in part while Edith and Lane A. Hemaspaandra were visiting the Tokyo Institute of Tech-
nology’s Department of Mathematical and Computing Sciences, in part while Edith and Lane A. Hemaspaandra
were visiting ETH Ziirich’s Department of Computer Science, and in part while Holger Spakowski was visiting
the University of Rochester’s Department of Computer Science. This work was presented at MFCS 2018 [2].

The Robustness of LWPP and WPP, with an Application to Graph Reconstruction 17

unchanged even if one allows a polynomial number of target values for the number of accepting
paths of the machine.

References

[1] S. FENNER, L. FORTNOW, S. KURTZ, Gap-Definable Counting Classes. Journal of Computer and
System Sciences 48 (1994) 1, 116-148.

[2] E. HEMASPAANDRA, L. A. HEMASPAANDRA, H. SPAKOWSKI, O. WATANABE, The Robust-
ness of LWPP and WPP, with an Application to Graph Reconstruction. In: I. POTAPOV, P. SPI-
RAKIS, J. WORRELL (eds.), 43rd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs) 117, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018, 51:1-51:14.
http://drops.dagstuhl.de/opus/volltexte/2018/9633

[3] J. KOBLER, U. SCHONING, J. TORAN, Graph Isomorphism is low for PP. Computational Complex-
ity 2 (1992), 301-330.

’7/-ﬁEOR1E- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 18-21.

Sequential Grammars with Activation and Blocking of
Rules and Sequential Grammars with Graph Control

Rudolf Freund

Faculty of Informatics, TU Wien
Favoritenstra3e 9—11, 1040 Vienna, Austria
rudi@emcc.at

Abstract

We introduce the control mechanism of activation and blocking of rules for a general
model of sequential grammars and compare it with graph control.

1. Control Mechanisms

In this section we recall the notions and basic results for the general model of sequential gram-
mars equipped with specific control mechanisms as elaborated in [3], based on the applicability
of rules, as well as for the new concept of activation and blocking of rules as exhibited in [1]
and [2].

1.1. A General Model for Sequential Grammars

A (sequential) grammar G is a construct (O, Or,w, P,==>¢,) where

— O is a set of objects;

— Op C O is a set of terminal objects;

w € O is the axiom (start object);

— P is a finite set of rules;

- =, C O x O is the derivation relation of G.
Each of the rules p € P induces a relation =-,C O x O with respect to =>¢,. A rule
p € P is called applicable to an object x € O if and only if there exists at least one object
y € O such that (z,y) € =; we also write + =, y. The derivation relation =,
is the union of all =, i.e., =, = Upecp =. The reflexive and transitive closure of

=@, is denoted by :*>Gs'

Specific conditions on the rules in P define a special type X of grammars which then will
be called grammars of type X.
The language generated by G is the set of all terminal objects that can be derived from the
axiom, i.e.,
L(GS) = {’U € Or | w:*>Gs ’U}.

The family of languages generated by grammars of type X is denoted by £ (X).

Activation and Blocking of Rules and Graph Control 19

If for every G5 of type X we have O = O, then X is called a pure type, otherwise it is
called extended; X is called strictly extended if for any grammar G of type X, w ¢ O and for
all z € Op, no rule from P can be applied to z.

A type X of grammars is called a type with unit rules if for every grammar of type X

Gs = (0,071, w, P,=>) there exists a grammar G, = (O, Op,w,PU P, :>Gg> of type X
such that =, C = and

_ pH) = {p(+) Ipe p}’

— forall z € O, pt) is applicable to z if and only if p is applicable to x, and

— forall z € O, if p(*t) is applicable to z, the application of p(*) to yields x back again.

A type X of grammars is called a type with trap rules if for every grammar of type X
Gs= (0,071, w, P,=>) there exists a grammar G, = (O7 Op,w,PUP), :>G§> of type X
such that =, C = and

_ po)— {p<—> Ipe p},

for all z € O, p{~) is applicable to z if and only if p is applicable to z, and
forall z € O, if p=) is applicable to x, the application of P tox yields an object y from
which no terminal object can be derived anymore.

1.2. Graph-controlled and Programmed Grammars
A graph-controlled grammar (with applicability checking) of type X is a construct
Gae = (Gs,9,Hi, Hp,=>cc)

where G5 = (0,07, w, P,)=—>¢) is a grammar of type X; g = (H,E,K) is a labeled graph
where H is the set of node labels identifying the nodes of the graph in a one-to-one manner,
E C Hx{Y,N} x H is the set of edges labeled by Y or N, K : H — 2% is a function assigning
a subset of P to each node of g; H; C H is the set of initial labels, and Hy C H is the set of
final labels. The derivation relation = is defined based on =>(;, and the control graph g
as follows: For any ¢,j € H and any u,v € O, (u,i) =>g¢ (v,7) if and only if

— u==pvbysomerulep e K (i) and (3,Y,7) € E (success case), or

— u=w,n0 p € K (i) is applicable to u, and (i, N, j) € F (failure case).

The language generated by G is defined by

L(Gge) = {veOr| (w,i) —=Goe (0,7), 1€ Hiyj € Hf}.

If H; = Hy = H, then G is called a programmed grammar. The families of languages gen-
erated by graph-controlled and programmed grammars of type X are denoted by £ (X-GCy,)
and £ (X-P,.), respectively. If the set F' contains no edges of the form (i, IV, j), then the graph-
controlled grammar is said to be without applicability checking; the corresponding families of
languages are denoted by £ (X-GC') and L (X-P), respectively.

As a special variant of graph-controlled grammars we consider those where all labels are
final; the corresponding family of languages generated by graph-controlled grammars of type X

is abbreviated by £ (X Nelorrel mal) . By definition, programmed grammars are just a subvariant
where in addition all labels are also initial.

20 Rudolf Freund

1.3. Grammars with Activation and Blocking of Rules

A grammar with activation and blocking of rules (an AB-grammar) of type X is a construct
GAB = (GS>L>fL7A7Ba LOa :>GAB)

where G = (0,07, w, P,—>¢) is a grammar of type X, L is a finite set of labels with each
label having assigned one rule from P by the function f7,, A, B are finite subsets of L x L x N,
and Ly is a finite set of tuples of the form (q, Q, Q) , ¢ € L, with the elements of), Q being of
the form (/,t), wherel € Landt € N, ¢ > 1.

A derivation in G 4 starts with one element (g,Q,Q) from Lo which means that the rule
labeled by g has to be applied to the initial object w in the first step and for the following deriva-
tion steps the conditions given by () as activations of rules and () as blockings of rules have to
be taken into account in addition to the activations and blockings coming along with the appli-
cation of the rule labeled by ¢. The role of Ly is to get a derivation started by activating some
rule for the first step(s) although no rule has been applied so far, but probably also providing
additional activations and blockings for further derivation steps.

A configuration of G 45 in general can be described by the object derived so far and the
activations () and blockings () for the next steps. In that sense, the starting tuple (q, Q, Q) can be
interpreted as ({(¢,1)} UQ,Q), and we may also simply write (Q’,Q) with Q' = {(¢,1)} U Q.
We mostly will assume @ and () to be non-conflicting, i.e., @ N Q = 0); otherwise, we interpret
(Q.Q) as (\Q.Q).

Given a configuration (mQ,Q), in one step we can derive (v,R,R), and we also write
(4,Q,Q) =>¢ ,, (v, R, R), if and only if

— u =>¢ v using the rule r such that (¢,1) € @ and (¢,r) € fr, i.e., we apply the rule

labeled by ¢ activated for this next derivation step to u; the new sets of activations and

blockings are defined by
R={(z,i)|(z,i+1)€Q, i>0}U{(z,4) | (¢,2,i) € B},
R ({{ w))l(x it+1) €Q,i>0yU{(x,7) | (q,2,7) € A})

|

(,4) | (

(observe that R and R are made non-conflicting by eliminating rule labels which are
activated and blocked at the same time); or

— no rule r is activated to be applied in the next derivation step; in this case we take v = u
and continue with (U, R, R) constructed as before provided R is not empty, i.e., there are
rules activated in some further derivation steps; otherwise the derivation stops.

The language generated by GG 45 is defined by

L(Gap)={veOr| (w,Q,Q) = Cn (v, R, R) for some (Q,Q) € Lo} .

The family of languages generated by AB-grammars of type X is denoted by £ (X-AB). If the
set B of blocking relations is empty, then the grammar is said to be a grammar with activation
of rules (an A-grammar for short) of type X; the corresponding family of languages is denoted
by L(X-A).

Activation and Blocking of Rules and Graph Control 21

2. AB-Grammars and Graph-controlled Grammars

Theorem 2.1 For any type X, L(X-AB) C L(X-GCy).

In the case of graph-controlled grammars with all labels being final, for any strictly extended
type X with trap rules, we can show an exciting result exhibiting that the power of rule activation
is really strong and that the additional power of blocking is not needed.

Theorem 2.2 For any strictly extended type X with trap rules,
c (X-Gcgglfmal) C L(X-A).

As programmed grammars are just a special case of graph-controlled grammars with all
labels being final, we immediately infer the following result:

Corollary 2.3 For any strictly extended type X with trap rules,
L(X-Pac) CL(X-A).
Combining Theorems 2.1 and 2.2, we infer the following equality:

Corollary 2.4 For any strictly extended type X with trap rules,
allfinal \ __
c (X-Gcac) = L(X-A).

For example, in the string case the preceding general results yield the following result
(where C'F’ denotes the type of context-free string grammars, RE denotes the family of re-
cursively enumerable languages):

Corollary 2.5 L(CF-GCy) = L(CF-P,.) = L(CF-A)=RE.

References

[1] A. ALHAZOV, R. FREUND, S. IVANOV, P systems with activation and blocking of rules. In:
S. STEPNEY, S. VERLAN (eds.), Unconventional Computation and Natural Computation. 17th In-
ternational Conference, UCNC 2018, Fontainebleau, France, June 25-29, 2018, Proceedings. Lec-
ture Notes in Computer Science, Springer, 2018, 1-15.

[2] R. FREUND, Control mechanisms for array grammars on Cayley grids. In: J. DURAND-LOSE,
S. VERLAN (eds.), Machines, Computations, and Universality. Springer, 2018, 1-33.

[3] R. FREUND, M. KOGLER, M. OSWALD, A general framework for regulated rewriting based on the
applicability of rules. In: J. KELEMEN, A. KELEMENOVA (eds.), Computation, Cooperation, and
Life - Essays Dedicated to Gheorghe Paun on the Occasion of His 60th Birthday. Lecture Notes in
Computer Science 6610, Springer, 2011, 35-53.

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 22-28.

Komplexititstheorie bei Formalen Sprachen

Henning Fernau'

(4)Universitt Trier, Informatikwissenschaften, CIRT

fernau@uni-trier.de

Zusammenfassung

Wir betrachten einige neuere Aspekte dieser alten Beziehung. Wir konzentrieren uns
auf Aspekte der parameterisierten Komplexitit und auf den Nachweis unterer Schranken.

1. Einleitung

Schon die Betrachtung klassischer Lehrbiicher der Theoretischen Informatik wie [15] zeigt,
wie eng Komplexititstheorie und Formale Sprachen zusammenhéngen. Wir mochten in diesem
Beitrag auf einige modernere Aspekte dieses Zweiklangs aufmerksam machen, fokussierend
auf einer mehrparametrischen Analyse der entsprechenden Probleme, die die Ursachen fiir die
Hirte von gewissen Berechnungsproblemen aufzeigen mochte. Hierbei setzen wir elementare
Kenntnisse aus dem Bereich der parameterisierten Komplexitét voraus, siehe [8, 10]. Unter dem
Standardparameter eines Problems versteht man eine Schranke auf die Grof3e des Objekts, nach
dem gesucht wird. Gerade bei formalsprachlichen Problemen ergibt sich jedoch eine Vielzahl
weiterer natiirlicher Parameter, wie wir im Folgenden zeigen wollen. AbschlieBend erortern wir
neuere untere Komplexitétsschranken.

2. Parameter Alphabetgrofe

Dieser Parameter mag zunichst verwundern: Wie kann die Hirte eines Problems in der Gro83e
des Alphabetes stecken? Es gibt aber Beispiele, bei denen das der Fall ist, und andere, wo das
nicht so ist. Wir beschrinken uns auf zwei klassische Probleme.

2.1. Editierprobleme

Bei Worteditierproblemen (string-to-string correction, kurz S2S) werden klassischerweise vier
Operationen betrachtet:

C Change: Ersetze einen einzelnen Buchstaben durch einen anderen;

D Delete: Losche einen einzelnen Buchstaben;

I Insert: Fiige einen einzelnen Buchstaben ein;

S Swap: Vertausche zwei benachbarte Buchstaben.
Es sei O eine Teilmenge dieser Operationen. O-S2S erhilt als Eingaben zwei Worter M, T
und eine Zahl k£ und fragt, ob es mit hochstens &£ Operationen aus O méglich ist, S in T zu
verwandeln. Wagner [30] hat folgendes schone Dichotomieergebnis gezeigt:

Komplexititstheorie bei Formalen Sprachen 23

Satz 2.1 Gilt O ¢ {{S,D},{S,I}}, soist O-S2S in Polynomzeit lésbar; fiir O € {{S,D},{S,I}}
gilt, dass O-S2§ NP-schwer ist.

Die NP-Schwere fufit auf einem Beweis, bei dem die Alphabetgrofle unbeschrinkt ist. Es
blieb 40 Jahre lang offen, ob z.B. fiir den wichtigen Fall des Binidralphabetes O-S2S fiir O €
{{S,D},{S,1I}} doch in Polynomzeit 16sbar ist. Dieses wurde abschliefend in [17] behandelt:

Satz 2.2 Fiir O € {{S,D},{S,1}} und jedes feste Alphabet X gilt, dass O-S2S-¥ in Polynomzeit
losbar ist.

Aus der parameterisierten Sicht zeigt der zughorige Beweis, dass O-S2S in XP liegt bei
Parameterisierung mit der Alphabetgrofe. Die Mitgliedschaft in FPT ist noch ungeklért. Fiir
die Standardparameterisierung k£ konnte jedoch Folgendes gezeigt werden [3]:

Satz 2.3 Fiir O € {{8,D},{S,I}} kann O-52S in Zeit O*(1.62%) gelost werden.

Die Probleme, zentrale oder Median-Worter aufzufinden, kann man als Verallgemeinerun-
gen der Worteditierprobleme begreifen; S ist hier keine zulédssige Operation, es wird also der
Levenshtein-Abstand betrachtet. Hierfiir wurde auch zunichst nur fiir unbeschréinkte Alpha-
bete gezeigt, dass diese Probleme NP-schwer sind, spiter wurde dieses aber auch (sogar) fiir
Bindralphabete nachgewiesen, siehe [9, 19].

2.2. Grammatikbasierte Kompression

In Verallgemeinerung der bekannten Kompressionsverfahren von Lempel und Ziv haben Storer
und Szymanski vorgeschlagen (siehe [23, 26]), bei vorgelegtem Wort w eine mdglichst kleine
kontextfreie Grammatik G anzugeben mit L(G) = {w}. Hierbei wird die GroBe einer Gramma-
tik als Summe der Lingen rechter Regelseiten gemessen. Fiir das zugehorige Entscheidungs-
problem SGP konnte man [7, 25] zeigen, dass es NP-vollstindig ist. Es blieb sehr lange offen,
ob dieses Ergebnis auch fiir feste Alphabetgroflen gilt. Casel u. a. [6] konnten zeigen:

Satz 2.4 SGP ist NP-vollstindig fiir Eingabealphabetgrifien > 24.

Mit Parameter AlphabetgroBe sind somit keine FPT-Ergebnisse zu erwarten. Offen bleibt
aber z.B., ob SGP fiir Bindralphabete in Polynomzeit 16sbar ist. Ebenfalls ist offen, ob es Ni-
herungsalgorithmen mit konstantem Approximationsfaktor gibt (selbst bei fester Eingabealpha-
betgroBe). Fiir die Parameterisierung nach der Anzahl der Nichtterminale der Grammatik (oder
hier dquivalent nach der Anzahl der Regeln) ldsst sich Mitgliedschaft in XP und W[1]-Schwere
beweisen. Der entsprechendende Beweis benotigt allerdings beliebig gro3e Eingabealphabe-
te, sodass es offen bleibt, ob FPT-Mitgliedschaft mit der Gesamtalphabetgrofie als Parameter
gezeigt werden konnte. Fiir den Standardparameter k& (Grammatikgrof3e) erwidhnen wir noch:

Satz 2.5 SGP kann in Zeit O*(f(k)) gelost werden fiir eine Funktion f.

Natiirlich kann man auch andere GroBenmaBe fiir Grammatiken betrachten. Ahnliche Fra-
gen zur Beschreibung endlicher Sprachen werden in [14] diskutiert.

24 Henning Fernau

3. Fallbeispiel synchronisierende Worter

Ein Eingabewort w eines deterministischen endlichen Automaten A heifit synchronisierend,
falls es einen Zustand s gibt, sodass A bei Eingabe von w € I nach s iberfiihrt wird, gleich-
wohl wo A mit der Abarbeitung beginnt. Es ist leicht festzustellen, ob es iiberhaupt ein syn-
chronisierendes Wort fiir A gibt, jedoch NP-schwer zu entscheiden, ob es (bei vorgelegtem A
und k) ein synchronisierendes Wort der Linger hochstens & fiir A gibt.

] Parameter ‘ Komplexitit ‘ Polynomieller Kern? ‘
k W[2]-schwer —
|| NP-vollstindig fiir [I| =2 —
kund |I| FPT, Laufzeit O*(|1|¥) Nur falls NP C coNP/poly
q FPT, Laufzeit O*(29) Nur falls NP C coNP/poly

Table 1: Zusammenfassung der Ergebnisse fiir SW; ¢ ist Zustandsanzahl

Satz 3.1 [11, 29] Es gelten die in Tabelle 1 aufgefiihrten Ergebnisse.

Die positiven FPT-Ergebnisse sind durchweg trivial, jedoch schwer zu verbessern, wie das
folgende Resultat zeigt.

Satz 3.2 Falls SETH (starke Exponentialzeithypothese) gilt, so gibt es kein € > 0, sodass SW in
Zeit O*((|I| —€)*) gelist werden kinnte.

Wie auch in einem weiteren Beitrag auf diesem Workshop diskutiert, gibt es zahlreiche An-
wendungen fiir dieses Konzept. So werden Verallgemeinerungen dieses Konzeptes auf stochas-
tische Automaten in [27] diskutiert. Eine Diskussion derartiger Begriffe unter dem Blickwinkel
der parameterisierten Komplexitit steht noch aus.

Die Reichhaltigkeit natiirlicher Parameter ist eine der Charakteristika fiir Automaten- und
Wortprobleme. Als ein weiteres Fallbeispiel verweisen wir auf Morphismenprobleme [13].
Auch der bekannte Graphparameter “Baumweite” findet in diesem Kontext Anwendung [21].

4. Untere Schranken

In der letzten Dekade wurden immer mehr Ergebnisse publiziert, die unter in der Regel schwi-
cheren Annahmen (im Vergleich zum “Goldstandard” P vs. NP) untere Schranken fiir gewisse
Probleme zeigen. Satz 3.2 kann als ein Beispiel betrachtet werden. Klassische(re) Automaten-
probleme umfassen Schnittleerheit und Universalitdt. Exemplarisch sei hier folgendes neuere
Ergebnis erwihnt.

Satz 4.1 [12] Das Universalitciitsproblem fiir bincire NEAs mit q Zustinden kann in Zeit O*(29)
gelost werden, aber unter Annahme der ETH (Exponentialzeithypothese) nicht in Zeit O* (20(‘1)).

Aus diesen Uberlegungen ergeben sich auch Ergebnisse wie das folgende, an den vorigen
Abschnitt anschlielende. In der zitierten Arbeit finden sich viele weitere Resultate von dhnli-
cher Gestalt.

Komplexititstheorie bei Formalen Sprachen 25

Satz 4.2 [12] SW bei DEAs mit q Zustinden kann in Zeit O*(24) gelist werden, aber unter
Annahme der ETH (Exponentialzeithypothese) nicht in Zeit O*(2°(9)).

Fiir langenbeschrinkte Varianten solcher Automatenprobleme ergeben sich typischerweise
untere Schranken durch die SETH, wie schon in Satz 3.2.

Satz 4.3 [12] In Zeit O*(|I|F) kann festgestellt werden, ob ein vorgelegter NEA irgendein Wort
der Maximallinge k akzeptiert. Umgekehrt gibt es unter SETH kein ¢ > 0, sodass dieses Pro-
blem in Zeit O* ((|I| — £)¥) gelist werden konnte.

Es sollte klar sein, dass fiir (S)ETH-basierte untere Schranken andere Arten von Reduktio-
nen bendtigt werden als die in der klassischen Komplexitétstheorie iiblichen; so wiren Reduk-
tionen, die die GroBe der Instanzen superlinear wachsen lassen, in der Regel ungeeignet.

Die so genannte “Feinkornige Komplexitit” benutzt gern auch andere Hypothesen als (S)ETH,
oft fuBend auf wohluntersuchten Problemen wie z.B. k-Clique: Gegeben ist ein Graph G, und
gefragt wird, ob G eine Clique der GroBe k enthilt. NeSetfil und Poljak [18] konnten folgendes
Ergebnis zeigen:

Satz 4.4 3(-Clique kann auf Graphen mit n Knoten in Zeit O(n*") geléist werden, wobei w der
Exponent der Quadratmatrixmultiplikation ist, d.h., w < 2,373.

Leicht schlechtere Zahlen ergeben sich fiir £-Clique, wenn & nicht durch drei teilbar ist. Die
“passende” k-Clique-Hypothese behauptet nun, dass es fiir kein € > 0 einen moglicherweise
sogar randomisierten Algorithmus fiir k-Clique gibt, der in Zeit O (n®*/3-¢) lauft.

Satz 4.5 [1] Unter Annahme der k-Clique-Hypothese gibt es keinen Parsing-Algorithmus fiir
(feste) kontextfreie Grammatiken G, der fiir Worter w der Liinge n in Zeit O(n“~%) entscheidet,
obw € L(Q). Hierbei ist € > 0 beliebig.

Die erwihnte Schranke kann bekanntermafBlen auch erreicht werden, siehe [28, 22]. Diese
unteren Schranken iibertragen sich naturgemif auf Verallgemeinerungen wie Boolesche Gram-
matiken, fiir deren Parsing dhnliche obere Schranken gelten [20]. Wesentlich ist, dass dieses
recht neue Ergebnis fiir Grammatiken fester Grofle gilt, wihrend Lees Resultate [16] eine Ab-
hingigkeit der Grammatikgrofe von der Linge des zu parsenden Wortes einforderte. Bring-
mann und Wellnitz [S] haben den vorigen Satz (sowie [24]) erweitert zu folgendem Ergebnis,
das fiir Computerlinguisten relevant ist.

Satz 4.6 Unter Annahme der k-Clique-Hypothese gibt es keinen Parsing-Algorithmus fiir (fes-
te) baumadjungierende Grammatiken G, der fiir Worter w der Liinge n in Zeit O(n**~¢) ent-
scheidet, ob w € L(G). Hierbei ist ¢ > 0 beliebig.

Die Reduktionen in der feinkdrnigen Komplexitédt haben zumeist einen ganz eigenen Cha-
rakter. Von formalsprachlicher Relevanz sind Arbeiten zu Stringproblemen; wir erwéhnen nur
zwel Arbeiten: [2, 4], die auch andere Grundprobleme als k-Clique benutzen.

26

Henning Fernau

Literatur

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. ABBOUD, A. BACKURS, V. V. WILLIAMS, If the Current Clique Algorithms are Op-
timal, So is Valiant’s Parser. In: V. GURUSWAMI (ed.), IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS. IEEE Computer Society, 2015, 98—-117.

A. ABBOUD, V. V. WILLIAMS, O. WEIMANN, Consequences of Faster Alignment of
Sequences. In: J. ESPARZA, P. FRAIGNIAUD, T. HUSFELDT, E. KOUTSOUPIAS (eds.),
Automata, Languages, and Programming - 41st International Colloquium, ICALP, Pro-
ceedings, Part I. LNCS 8572, Springer, 2014, 39-51.

F. N. ABU-KHzZAM, H. FERNAU, M. A. LANGSTON, S. LEE-CULTURA, U. STEGE,

A Fixed-Parameter Algorithm for String-to-String Correction. Discrete Optimization 8
(2011), 41-49.

K. BRINGMANN, M. KUNNEMANN, Multivariate Fine-Grained Complexity of Longest
Common Subsequence. In: A. CZUMAIJ (ed.), Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA. SIAM, 2018, 1216-1235.

K. BRINGMANN, P. WELLNITZ, Clique-Based Lower Bounds for Parsing Tree-Adjoining
Grammars. In: J. KARKKAINEN, J. RADOSZEWSKI, W. RYTTER (eds.), 28th Annual
Symposium on Combinatorial Pattern Matching, CPM. LIPIcs 78, Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2017, 12:1-12:14.

K. CASEL, H. FERNAU, S. GASPERS, B. GRAS, M. L. SCHMID, On the Complexity of
Grammar-Based Compression over Fixed Alphabets. In: I. CHATZIGIANNAKIS, M. MIT-
ZENMACHER, Y. RABANI, D. SANGIORGI (eds.), International Colloquium on Automata,
Languages and Programming, ICALP. Leibniz International Proceedings in Informatics
(LIPIcs) 55, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2016, 122:1-122:14.

M. CHARIKAR, E. LEHMAN, D. L1U, R. PANIGRAHY, M. PRABHAKARAN, A. SAHAI
A. SHELAT, The smallest grammar problem. IEEE Transactions on Information Theory
51 (2005) 7, 2554-2576.

M. CYGAN, F. FOMIN, L. KOWALIK, D. LOKSHTANOV, D. MARX, M. PILIPCZUK,
M. PILIPCZUK, S. SAURABH, Parameterized Algorithms. Springer, 2015.

C. DE LA HIGUERA, F. CASACUBERTA, Topology of strings: Median string is NP com-
plete. Theoretical Computer Science 230 (2000), 39—48.

R. G. DOWNEY, M. R. FELLOWS, Fundamentals of Parameterized Complexity. Texts in
Computer Science, Springer, 2013.

H. FERNAU, P. HEGGERNES, Y. VILLANGER, A multi-parameter analysis of hard pro-

blems on deterministic finite automata. Journal of Computer and System Sciences 81
(2015) 4, 747-765.

H. FERNAU, A. KREBS, Problems on Finite Automata and the Exponential Time Hypo-
thesis. Algorithms 10 (2017), 24:1-25.

Komplexititstheorie bei Formalen Sprachen 27

[13] H. FERNAU, M. L. SCHMID, Y. VILLANGER, On the Parameterised Complexity of String
Morphism Problems. Theory of Computing Systems 59 (2016) 1, 24-51.

[14] H. GRUBER, M. HOLZER, S. WOLFSTEINER, Concise Description of Finite Languages,
Revisited. In: H. FERNAU (ed.), Theorietag. Technical Report, Computer Science and
Mathematics, Trier University 17-1, 2017, 32-36.

[15] J. E. HOPCROFT, J. D. ULLMAN, Introduction to Automata Theory, Languages, and
Computation. Reading (MA): Addison-Wesley, 1979.

[16] L. LEE, Fast context-free grammar parsing requires fast boolean matrix multiplication.
Journal of the ACM 49 (2002) 1, 1-15.

[17] D. MEISTER, Using swaps and deletes to make strings match. Theoretical Computer
Science 562 (2015), 606-620.

[18] J. NESETRIL, S. POLJAK, On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae 26 (1985) 2, 415-419.

[19] F. NicoLAS, E. R1VALS, Hardness results for the center and median string problems under
the weighted and unweighted edit distances. Journal of Discrete Algorithms 3 (2005) 2-4,
390-415.

[20] A. OKHOTIN, Parsing by matrix multiplication generalized to Boolean grammars. Theo-
retical Computer Science 516 (2014), 101-120.

[21] D. REIDENBACH, M. L. SCHMID, Patterns with bounded treewidth. Information and
Computation 239 (2014) 0, 87-99.

[22] W. RYTTER, Context-free recognition via shortest paths computation: a version of Vali-
ant’s algorithm. Theoretical Computer Science 143 (1995) 2, 343-352.

[23] W. RYTTER, Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science 302 (2003), 211-222.

[24] G. SATTA, Tree-adjoining Grammar Parsing and Boolean Matrix Multiplication. Journal
Computational Linguistics 20 (1994) 2, 173-191.

[25] J. A. STORER, NP-Completeness Results Concerning Data Compression. Technical Re-
port 234, Dept. Electrical Engineering and Computer Science, Princeton University, USA,
1977.

[26] J. A. STORER, T. G. SZYMANSKI, Data compression via textual substitution. Journal of
the ACM 29 (1982) 4, 928-951.

[27] N. F. TRAVERS, J. P. CRUTCHFIELD, Exact Synchronization for Finite-State Sources.
Journal of Statistical Physics 145 (2011) 5, 1181-1201.

[28] L. G. VALIANT, General Context-Free Recognition in Less than Cubic Time. Journal of
Computer and System Sciences 10 (1975) 2, 308-315.

28 Henning Fernau

[29] V. VOREL, A. ROMAN, Parameterized complexity of synchronization and road coloring.
Discrete Mathematics & Theoretical Computer Science 17 (2015), 283-306.

[30] R. A. WAGNER, On the complexity of the Extended String-to-String Correction Problem.

In: STOC ’75: Proceedings of seventh Annual ACM Symposium on Theory of Computing.
ACM Press, 1975, 218-223.

,7I%EORIE— K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitat Halle-Wittenberg, Technischer Bericht 18-1, S. 29-32.

Equations in SL(2,7)
Volker Diekert

(DInstitut fiir Formale Methoden der Informatik, Universitit Stuttgart, Germany

Abstract

There are classical connections between Hilbert’s Tenth Problem, WORDEQUA-
TIONS, and SL(2,Z). This note relates them to some recent results showing that
the existential theory of SL(2,Z) is in PSPACE.

Introduction!

Hilbert’s Tenth Problem appears in the publication to Hilbert’s famous 1900 address to
the International Congress of Mathematicians in Paris. The problem is stated as follows:

“Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined in a finite number of operations whether the
equation is solvable in rational integers.”

It was only in 1970 when Matiyasevich showed (based on previous work by Davis, Put-
nam, and Robinson) that Hilbert’s Tenth Problem is undecidable [13]. In order to show
undecidability he tried first, but in vain, to show that the problem WORDEQUATIONS is
undecidable. A word equation is a pair (U,V') where U and V' are strings over finite sets of
constants A and variables €). A solution is a mapping o : Q) — A* which is extended to a
homomorphism o : (AUQ)* — A* leaving the constants invariant such that o(U) = o (V)
becomes an identity in A*. A program of a Turing machine can be viewed a string rewrit-
ing system, so it was quite tempting to believe that the problem WORDEQUATIONS is
undecidable. In the language of Hilbert WORDEQUATIONS is the following problem:

“Given a word equation: To devise a process according to which it can be
determined in a finite number of operations whether the equation is solvable.”

Why did Matiyasevich try to prove that WORDEQUATIONS is undecidable when he was
interested in Hilbert 10?7 The connection is via the group SL(2,Z): the special linear
group of 2 X 2-matrices with integral numerical coefficients:

SL(2,2) ={(¢}) | a,b,c.d € ZAad —be=1}.

IThe same talk with was given in Kyoto, September 5th, 2018 during a DLT 2018 satellite workshop
dedicated to Masami Ito’s KIJU and Pal Démési’s 75th birthday

30 Volker Diekert

It is not difficult to see that SL(2,N) = {(‘; g) | a,b,c,d € NANac—bd =1} forms a free
monoid of rank 2 inside SL(2,Z). This fact has, for example, a nice application to fast
randomized pattern matching [8]. The (unique) basis of SL(2,N) is given by the two
matrices (1) and (}19). It is therefore possible to encode a word equation over {a,b}
(which captures the general case) as an equation over SL(2,Z). Each word variable X
becomes a matrix (ﬁ; %1) The equation (U, V') becomes a polynomial identity over Z and
we add equations X1X4 — X2X3 =1 to ensure the determinant is 1. Finally, to guarantee
that each o(X;) is non-negative we employ a theorem of Lagrange that every non-negative
integer is the sum of four squares. Having shown that Hilbert 10 is undecidable doesn’t
mean that WORDEQUATIONS is undecidable. Indeed, a few years later in 1977, Makanin
wrote a seminal paper showing that WORDEQUATIONS is decidable [11]. Thus, the status
in 1977 was as follows: WORDEQUATIONS is decidable, Hilbert 10 is undecidable, but
no results whether or not “Equations over SL(2,7Z)” is decidable. It took almost 30 more
years to give a positive answer in 2006.

SL(2,7)

The algebraic structure of the group SL(2,Z) is well-understood. It is amalgamated prod-
uct of the two cyclic groups Z/67Z and Z/4Z over their common subgroup Z/2Z. Possible
generators are the matrices p = ((1) _11) and 7 = (_01 (1)) We have p? =72 = (Bl Pl) =-1
Hence p and 7 have orders 6 and 4 respectively. Since SL(2,Z) = Z/4Z xy,/97 7/ 6Z there is
a natural surjective homomorphism v : SL(2,Z) — Z/12Z given by ~(p) =2 and ~(7) = 3.
It is not very hard to see and it follows from a well-known classical result of Newman that
the kernel of v is commutator subgroup SL(2,Z)" [14, Lem. 1]. Moreover, SL(2,Z)" is a
free group of rank 2 with basis {Tp7p2, Tp27'p}. Thus, SL(2,Z) is virtually free.

In particular, all finitely generated submonoids of free groups appear as finitely gener-
ated submonoids in SL(2,Z). More general: all rational subsets in free groups embed as
rational subsets in SL(2,Z). In the 1980s, Makanin showed that the existential theory of
free groups is decidable [12]; and [4] showed that the problem is actually PSPACE-complete
in the presence of rational constraints. This opened the way to tackle successfully the prob-
lem how to solve equations (with rational constraints) over finitely generated virtually free
groups: Lohrey and Sénizergues [10] showed a transfer result for certain amalgamated
products and HNN extension; and Dahmani and Guirardel [2] extended the decidability
result from virtually free groups to hyperbolic groups by showing how to solve twisted
word equations with rational constraints. Both papers, [10] and [2], are long and use a
quite complicated and advanced machinery. Both approaches use [4] as a black box which
in turn is a rather technical paper with more than 30 pages.

As a special case of [10, 2] the decidability of the existential theory of SL(2,Z) was
eventually established, but a concrete algorithm or complexity bound was somehow “lost
in translation”? So, our journey is not over.

In 2013 Jez [7] surprised the community by presenting an extremely simple and easy
to understand NSPACE(nlogn)-algorithm how to solve word equations. His algorithm
did more: it provides an effective description of all solutions and, as a side effect, an

2Not meant to be confused with the 2003 American romantic comedy-drama playing in a Tokyo hotel.

Equations in SL(2,7) 31

NSPACE(nlogn)-algorithm to decide whether there are infinitely many solutions. Soon
after the publication, it became clear that his recompression technique copes with rational
constraints and the presence of an involution [5]: leading to a simpler proof for a more
general result with a better complexity with respect to existential theory in free groups
than shown in [4]. Actually, (re-)compression turned out to be even more powerful.
[1] showed that the solution set for an equation over free group is an effective EDTOL-
language. At least for one of the authors this was a highly unexpected and amazingly
simple structural description for the set of all solutions. The underlying technique made
it possible to derive the same structural result for twisted word equations [3]. This was
more demanding. However, as a consequence, [3] still provides a much easier to understand
algorithm how to solve equations in virtually free groups than [10] or [2]. Moreover, for
the first time a concrete and reasonable complexity bound was established: PSPACE,
or more precisely: NSPACE(n?logn). Within this complexity it is also possible (for a
fixed finitely generated virtually free group) to construct for a system of equations (with
rational constraints) an effective description of the solution set as an EDTOL-language.
The description is given by a finite nondeterministic automaton where the transitions are
labeled by endomorphisms over a free monoid. The automaton is empty if and only if
the solution set is empty, it has a directed cycle if and only if the solution set is infinite;
and, perhaps most importantly, these properties can be decided in PSPACE, respectively
in NSPACE(n?logn).

The construction for virtually free groups relies heavily on Bass-Serre theory [15], but
for SL(2,Z) everything can be made fully explicit, so that no knowledge of Bass-Serre
theory is required to understand the procedure.

With that focus another issue becomes important: when dealing SI.(2,7Z) we typically
use binary notation for the integer coefficients. Thus, the size of a matrix (§ %) should
be O(logn) rather than ©(n) in unary notation. However, the PSPACE-complexity for
SL(2,Z) was established for unary notation, only. That is: an element of SL(2,7Z) is
written as a (perhaps very long) word over the generators p and 7 and the unary size the
matrix is the word length. Thus, a direct application of [3] to SL(2,Z) yields EXPSPACE,
nothing better.

This would have been a sad ending of a success story. Fortunately, SL(2,Z) enables
elementary number theory: Fibonacci numbers and the Euclidean algorithm pop-up when
rewriting a matrix in the free monoid SL(2,N) in its basis. It is therefore possible to encode
every matrix in SL(2,Z) in binary notation as a word over p’s and 7’s with exponents
written in binary without increasing the denotational length by more than a linear factor:
see the last section in the paper of Gurevich and Schupp [6]. This leads to a formalism
where equations are not necessarily written in plain form, but where also exponents in
binary notation are allowed. Now, exponential expressions can be encoded as straight-line
programs, and that doesn’t lead us outside PSPACE, see for example [9].

Conclusion. Forty years after the publication of Makanin’s result [11] we knew how
to solve equations over SL(2,Z) in PSPACE. The complexity holds even if we use binary
notation for the matrices. Moreover, we may allow rational constraints and we can do
more: we find an effective description of the solution set as an EDTOL-language. This
result about the special case of the special linear group SL(2,7Z) is quite special: it is
stronger than the corresponding results for free monoids and free groups.

32

Volker Diekert

References

1]

[6]

[7]

[13]
[14]

[15]

L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations over free groups are
EDTOL languages. International Journal of Algebra and Computation, 26:843-886,
2016. Conference abstract in Proc. ICALP 2015, LNCS 9135.

F. Dahmani and V. Guirardel. Foliations for solving equations in groups: free,
virtually free and hyperbolic groups. J. of Topology, 3:343—-404, 2010.

V. Diekert and M. Elder. Solutions of twisted word equations, EDTOL languages,
and context-free groups. In Proc. ICALP 2017, volume 80 of LIPIcs, 96:1-96:14,
Dagstuhl, Germany, 2017.

V. Diekert, C. Gutiérrez, and Ch. Hagenah. The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Information and Computa-
tion, 202:105-140, 2005. Conference abstract in Proc. STACS 2001, LNCS 2010.

V. Diekert, A. Jez, and W. Plandowski. Finding all solutions of equations in free
groups and monoids with involution. Information and Computation, 251:263-286,
2016. Conference abstract in Proc. CSR 2014, LNCS 8476.

Y. Gurevich and P. Schupp. Membership problem for the modular group. SIAM J.
Comput., 37:425-459, 2007.

A. Jez. Recompression: a simple and powerful technique for word equations. In
Proc. STACS, volume 20 of LIPIcs, 233-244, Dagstuhl, Germany, 2013. Journal
version in J. ACM 2016 with DOI http://dx.doi.org/10.1145/2743014.

R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31:249-260, 1987.

M. Lohrey. The Compressed Word Problem for Groups. Springer, 2014.

M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated prod-
ucts. In Proc. ICALP, LNCS 4052: 504-515, 2006.

G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147-236, 1977. English transl. in Math. USSR Sbornik 32 (1977).

G. S. Makanin. Decidability of the universal and positive theories of a free group.
Izv. Akad. Nauk SSSR, Ser. Mat. 48:735-749, 1984. In Russian; English translation
in: Math. USSR Izvestija, 25, 75-88, 1985.

Yu. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

M. Newman. The structure of some subgroups of the modular group. [llinois J.
Math., 6:480-487, 1962.

J.-P. Serre. Trees. Springer, 1980. French original 1977.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 33-36.

Completely Reachable Automata:
An Interplay Between Semigroups, Automata, and
Trees

E. A. Bondar and M. V. Volkov

Institute of Natural Sciences and Mathematics
Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia

bondareug@gmail.com, mikhail.volkov@usu.ru

Zusammenfassung

A complete deterministic finite automaton in which every non-empty subset of the state
set occurs as the image of the whole state set under the action of a suitable input word is
called completely reachable. We overview recent results on synchronization of completely
reachable automata with transition monoids of maximal or minimal possible size.

A complete deterministic finite automaton (DFA) is a triple & = (Q,X,0), where () and £
are finite sets called the state set and the input alphabet respectively, and §: @) X £ — () is a total
map called the transition function. Let X* be the free monoid over X, that is, the collection of all
finite words over X, including the empty word. The function § extends to a function () x £* — @
(still denoted by ¢) in the usual way: for every g € @ and w € ¥*, we set 0(q,w) := ¢ if w is
empty and 0(q,w) := 0(d(q,v),a) if w = va for some word v € £* and some letter a € X.
Thus, via §, every word w € X* induces a transformation of the set (). The collection of all
transformations of () that arise this way is called the transition monoid of </ .

Whenever we deal with a fixed DFA, we suppress the sign of the transition function. This
means that we introduce the DFA as the pair (@, L) rather than the triple (Q,X,d) and write ¢. w
for §(¢q,w) and P.w for {d(¢q,w) | ¢ € P} where P is any non-empty subset of ().

Given a DFA o/ = (Q),X), we say that a non-empty subset P C () is reachable in <f if
P = @ .w for some word w € X*. A DFA is called completely reachable if every non-empty
subset of its state set is reachable. Our paper [1] lists several motivations for considering com-
pletely reachable automata. In particular, such DFAs have appeared in the study of descriptional
complexity of formal languages [7, 1] and in relation to synchronizing automata [3, 5]. Recall
that a DFA .7 = (Q,X) is called synchronizing if there is a word w € £* whose action resets <7,
that is, leaves .7 in one particular state no matter at which state it started: ¢.w = ¢’. w for all
q,q" € Q. This amounts to saying that a singleton is reachable in ./, whence every completely
reachable automaton is synchronizing.

If & = (Q,X) is a synchronizing automaton, any word w € X* such that (). w is a singleton
is called a reset word for /. The minimum length of reset words for 7 is called the reset

Supported by the Russian Foundation for Basic Research, grant no. 16-01-00795, the Ministry of Education
and Science of the Russian Federation, project no. 1.3253.2017, and the Competitiveness Enhancement Program
of Ural Federal University.

34 E. A. Bondar and M. V. Volkov

threshold of <. In 1964, Cern}’/ [2] constructed for each n > 1, a synchronizing automaton
%, with 2 input letters and n states that has reset threshold (n — 1)2. The states of %, are the
residues modulo n, and the input letters a and b act as follows:

0.a:=1, m.a:=mforO<m<n, m.b:=m+1 (mod n).

The automata %, provide a lower bound for the maximum reset threshold for synchronizing
automata with n states. The famous Cerny conjecture claims that these automata represent the
worst possible case; in other terms, it the claim is that every synchronizing automaton with n
states can be reset by a word of length (n — 1)2. The conjecture, first stated in the 1960s, resists
researchers’ efforts for more than 50 years. The best upper bound achieved so far is cubic in

n; it is due to Szykuta [9] and is only slightly better than the upper bound ”36_ It established by
Pin [8] and Frankl [4] approx. 35 years ago.

The Cerny Conjecture has proved to be hard in general, and therefore, a natural strategy con-
sists in considering its restrictions to some special classes of DFAs. We refer to the survey [10]
and the chapter [6] of the forthcoming “Handbook of Automata Theory” for an overview of this
research direction. Here we consider synchronization of completely reachable automata. It is
known (see [7, 3]) that the automata %), in the Cerny series are completely reachable so that the
lower bound (n — 1)? for the reset threshold of automata with n states persists in the class of
completely reachable automata.

Don [3, Conjecture 18] has formulated the following conjecture: if a completely reachable
automaton .27 has n states, then every subset of size k can be reached in .27 via a word of length
at most n(n— k). Itis easy to see that if Don’s conjecture holds, then every completely reachable
automaton satisfies the éem}’/ conjecture. At the moment, it is not even known whether there
exists a constant C' such that in an arbitrary completely reachable DFA with n states, every
non-empty subset can be reached by a word of length n¢. So far, some progress has been
achieved for DFAs whose transition monoid is equal to the full monoid of transformations of
the state set [5]. Clearly, automata with the latter property are completely reachable but the
Cerny automata %, with n > 3 are not in this family of completely reachable automata since
the full transformation monoid on a set with more than 2 elements requires at least 3 generators.
Nevertheless, there exists a series of n-state automata ¥%;,, n > 3, in this class with reset threshold
@ [5, Theorem 4]. The state set of ¥}, is {0,...,n — 1} and the input alphabet consists of n

letters ay,...,ay. The transition function is defined as follows:
i.aj =1 for 0<i,j<n,i#j, i#j+1,
1.a;:=1—1 for 0<t<n-—1,
t.ai41 =1+ 1 for 0<i1<n—1,

O.ap=1.a,:=0,%.a,:=1 for 2<1<n—1.

Simply speaking, every letter a; for « < n — 1 swaps the states 7 and 7 — 1 and fixes the other
states. The letter a,, brings both 0 and 1 to 0 and fixes the other states. For an illustration, the
automaton 75 is shown in Fig. 1.

On the other hand, it is shown in [5, Lemmas 5 and 6] that if &/ = (Q,X) is an arbitrary
n-state DFA whose transition monoid contains all transformations of the set (), then for every
proper non-empty subset P C (), there exist a word w € £* of length at most 2n — 2 and a set
P’ C @ suchthat |P| < |P'| and P'.w = P. From this, it readily follows that, first, every subset

Completely Reachable Automata: An Interplay Between Semigroups, Automata, and Trees 35

az, az, a4, as az, a4 ai, a4, as - az, as, as aj, az, as, as

o, 0.0, 0.0

aj a as as4
0 — = 1 = 2 = 3 = 4
at, as () as aq

Figure 1: The automaton ¥s

of size k can be reached in </ via a word of length at most 2(n — 2)(n — k) and, second, the
reset threshold of <7 does not exceed 2n> — 6n + 5.

Thus, for the reset threshold of DFAs with full transition monoid, we have lower and upper
bounds with the same order of magnitude, namely, G)(nz). For follow-up work, one direction
is to refine the bounds with respect to the constants that do not match yet. Also, a lower bound
for the reset threshold of such automata with a fixed number of letters is of interest, since the
number of letters in the automata 77, is equal to the number of states.

Now we switch to completely reachable automata being in a sense the extreme opposites of
DFAs with full transition monoids, namely, on completely reachable automata whose transition
monoids have minimal possible size. Clearly, if a completely reachable automaton has n states,
then its transition monoid has at least 2" — 1 elements since each non-empty subset must occur
as the image of a transformation induced by an input word. A completely reachable automaton
with n states and exactly 2" — 1 elements in its transition monoid is called minimal. In [1] we
have given a classification of minimal completely reachable automata: they are parameterized
by full binary trees satisfying certain subordination conditions.

Recall that a binary tree is full if each its vertex v either is a leaf or has exactly two children.
We refer to the left/right child of v as the son/daughter of v. If " is a tree and v is its vertex,
I, stands for the subtree of I" rooted at v. A homomorphism between trees is a map between
their vertex sets that preserves the roots, the parent—child relation and the genders of non-root
vertices. If u and v are vertices of a tree I', we say that u subordinates v if there is a 1-1
homomorphism I, — I';,. A respectful tree is a full binary tree such that:

e if a male vertex has a nephew, the nephew subordinates his uncle;

e if a female vertex has a niece, the niece subordinates her aunt.

For instance, each perfect binary tree (that is, a full binary tree in which all leaves have the same
depth, see Fig. 2) is respectful.

In [1, Section 4] we describe a construction that, given an arbitrary respectful tree I" with
n leaves, produces a minimal completely reachable automaton < (I") with n states and 2n — 2
input letters (one for each non-root vertex of I'). Conversely, for every minimal completely
reachable automaton o7 with n states, there exists a respectful tree I" with n leaves such that
the automata 7 and o7 (I') are syntactically equivalent, that is, their transition monoids coinci-
de. Here we add the following result to this characterization of minimal completely reachable
automata: for every minimal completely reachable automaton, its reset threshold is equal to
the minimum length of a path from the root to a leaf in the corresponding respectful tree. In
particular, the reset threshold of minimal completely reachable automaton with n states does
not exceed log, n, and this bound is attained for the minimal completely reachable automata
corresponding to perfect binary trees.

36

E. A. Bondar and M. V. Volkov

VAN

Figure 2: Perfect binary tree

Literatur

[1]

(2]

[3]
[4]

[5]

[9]

[10]

E. A. BONDAR, M. V. VoLKOV, Completely Reachable Automata. In: C. CAMPEANU, F. MA-
NEA, J. SHALLIT (eds.), Descriptional Complexity of Formal Systems, 18th Int. Conf., DCFS 2016.
LNCS 9777, Springer, 2016, 1-17.

J. CERNY, Pozndmka k homogénnym eksperimentom s kone&nymi automatami. Matematicko-
fyzikalny Casopis Slovenskej Akadémie Vied 14 (1964) 3, 208-216. (in Slovak).

H. DoN, The Cerny Conjecture and 1-Contracting Automata. Electr. J. Comb. 23 (2016) 3, P3.12.

P. FRANKL, An extremal problem for two families of sets. European J. Combinatorics 3 (1982),
125-127.

F. GONZE, V. V. GUSEV, B. GERENCSER, R. M. JUNGERS, M. V. VOLKOV, On the Interplay
Between Babai and éern;’/’s Conjectures. In: E. CHARLIER, J. LEROY, M. RIGO (eds.), Develop-
ments in Language Theory — 21st Int. Conf., DLT 2017. LNCS 10396, Springer, 2017, 185-197.

J. KARI, M. VOLKOV, éerny’s conjecture and the Road Coloring Problem. In: J.-E. PIN (ed.),
Handbook of Automata Theory. chapter 15, EMS Publishing House. (in print).

M. I. MASLENNIKOVA, Reset complexity of ideal languages. In: M. BIELIKOVA, G. FRIEDRICH,
G. GOTTLOB, S. KATZENBEISSER, R. SPANEK, G. TURAN (eds.), Current Trends in Theory and
Practice of Computer Science, 38th Int. Conf., SOFSEM 2012. Vol. II. Inst. Comp. Sci. Acad. Sci.
Czech Republic, 2012, 33-44.

J.-E. PIN, On two combinatorial problems arising from automata theory. Ann. Disc. Math. 17
(1983), 535-548.

M. SzZYKULA, Improving the Upper Bound on the Length of the Shortest Reset Word. In: R. NIE-
DERMEIER, B. VALLEE (eds.), 35th Symposium on Theoretical Aspects of Computer Science,
STACS 2018. LIPIcs 96, Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, 2018, 56:1-56:13.

M. V. VOLKOV, Synchronizing automata and the éern}’/ conjecture. In: C. MARTIN-VIDE, F. OT-
TO, H. FERNAU (eds.), Proc. 2nd International Conference on Language and Automata Theory
and Applications. LNCS 5196, Springer, 2008, 11-27.

’7/'5E0R1E_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 37-41.

The Satisfiability of Word Equations: Decidable and
Undecidable Theories

Joel D. Day® Vijay Ganesh'” Paul He'” Florin Manea™®
Dirk Nowotka™®

(DKijel University, Germany,
{jda,fpa,flm}@informatik.uni-kiel.de

(B)Waterloo University, Canada
vijay.ganeshQuwaterloo.ca,paul.he@edu.uwaterloo.ca

Abstract

The study of word equations (or the existential theory of equations over free monoids) is
a central topic in mathematics and theoretical computer science. The problem of deciding
whether a word equation has a solution was shown to be decidable by Makanin in the
late 1970s, and since then considerable work has been done on this topic. Recently, this
decidability question has gained critical importance in the context of string SMT solvers
for security analysis. Further, many extensions (e.g., quantifier-free word equations with
linear arithmetic over the length function) and fragments (e.g., restrictions on the number
of variables) of this theory are important from a theoretical point of view, as well as for
program analysis applications. Motivated by these considerations, we prove several new
results and thus shed light on the boundary between decidability and undecidability for
many fragments of the first order theory of word equations and their extensions.

1. Overview

A word equation is a formal equality U =V, where U and V' are words (called the left and right
side of the equation respectively) over an alphabet AU X; A = {a,b,c,...} is the alphabet of
constants or terminals and X = {x,xp,x3,...} is the set of variables. A solution to the equation
U =V is a morphism h : (AU X)* — A* that acts as the identity on A and satisfies h(U) =
h(V'); h is called the assignment to the variables of the equation. For instance, U = xjabx;
and V = ax ;b define the equation xjabx, = axjx,b, whose solutions are the morphisms A
with h(z;) = a¥, for k > 0, and h(x;) = b’, for £ > 0. An equation is satisfiable (in A*) if it
admits a solution i : (AUX)* — A*. A set (or system) of equations is satisfiable if there exists
an assignment of the variables of the equations in this set that is a solution for all equations.
In logical terms, word equations are often investigated as fragments of the first order theory
FO(A*,-) of strings. Karhumiki et al. [18] showed that deciding the satisfiability of a system
of word equations, that is, checking the truth of formulas from the existential theory ¥; of
FO(A*,-), can be reduced to deciding the satisfiability of a single (more complex) word equation
that encodes the respective system.

38 Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, Dirk Nowotka

The existential theory of word equations has been studied for decades in mathematics and
theoretical computer science with a particular focus on the decidability of the satisfiability of
logical formulae defined over word equations. Quine [27] proved in 1946 that the first-order
theory of word equations is equivalent to the first-order theory of arithmetic, which is known
to be undecidable. In order to solve Hilbert’s tenth problem in the negative [14], Markov later
showed a reduction from word equations to Diophantine equations (see [21, 22] and the ref-
erences therein), in the hopes that word equations would prove to be undecidable. However,
Makanin [22] proved in 1977 that the satisfiability of word equations is in fact decidable.
Though Markov’s approach was unsuccessful, similar ones, based on extended theories of
word equations, can also be explored. Matiyasevich [25] showed in 1968 a reduction from
the more powerful theory of word equations with linear length constraints (i.e., linear relations
between word lengths) to Diophantine equations. Whether this theory is decidable remains a
major open problem. More than a decade after Makanin showed that the satisfiability of word
equations is decidable, the focus shifted towards identifying the complexity of solving word
equations. Plandowski [26] showed in 1999 that this problem is in PSPACE. Recently, in a se-
ries of papers (see specifically e.g., [15, 16]), Jez applied a new technique called recompression
to word equations. This lead to, ulimately, a proof that the satisfiability of word equations can
be decided in linear space. However, there is a mismatch between this upper bound and the
known lower bound: solving word equations is NP-hard.

In recent years, deciding the satisfiability of systems of word equations has also become
an important problem in fields such as formal verification and security where string solvers
such as HAMPI [19], CVC4 [3], Stranger [30], ABC [2], Norn [1], S3P [28] and Z3str3 [4]
have become more popular. However, in practice more functionality than just word equations is
required, so solvers often extend the theory of word equations with certain functions (e.g., linear
arithmetic over the length, replace-all, extract, reverse, etc.) and predicates (e.g., numeric-string
conversion predicate, regular-expression membership, etc.). Most of these extensions are not
expressible by word equations, in the sense introduced by Karhuméki et al. [18], and some
of them lead to undecidable theories. On the one hand, regular (or rational) constraints or
constraints based on involutions (allowing to model the mirror image, or, when working with
equations in free groups, inverse elements), are not expressible, see [6, 18], but adding them to
word equations preserves the decidability [8]. As mentioned above, whether the theory of word
equations enhanced with a length function is decidable is still a major open problem. On the
other hand, the satisfiability of word equations extended with a replace-all operator was shown
to be undecidable in [20], and the same holds when a numeric-string conversion predicate is
added (see the Appendix). Due to this very complex and fuzzy picture, none of the solvers
mentioned above has a complete algorithm.

Our Contributions: In this setting, our work aims to provide a better understanding of the
boundary between extensions and restrictions of the theory of word equations for which satisfi-
ability is decidable and, respectively, undecidable.

Firstly, we present a series of undecidability results for the X;-fragment of FO(A*,-) ex-
tended with simple predicates or functions. In the main result on this topic, we show that
extending X; with constraints imposing that a string is the morphic image of another one also
leads to an undecidable theory. These results are related to the study of theories of quantifier-
free word equations constrained by very simple relations, see, e.g., [6, 13]. While our results do

The Satisfiability of Word Equations: Decidable and Undecidable Theories 39

not settle the decidability of the theory of word equations with length constraints, they enforce
the intuitive idea that enhancing the theory of word equations with predicates providing little
control on the combinatorial structure of the solutions of the equation leads to undecidability.

We further explore the border between decidability and undecidability when considering
formulae over word equations allowing at most one quantifier alternation. We show that check-
ing the truth of an arbitrary ¥,-formula is equivalent to, on the one hand, checking the truth of
a 3*V*-quantified terminal-free formula, or, on the other hand, to a single 3*V*-quantified in-
equation whose sides contain at most two terminals. Since the Inclusion of Pattern Languages
problem (see [5, 11, 17]) can be reformulated as checking the truth of a single 3*V*-quantified
inequation whose sides contain at most two terminals and are variable disjoint, and it is unde-
cidable, we obtain a clear image of the simplest undecidable classes of X,-formulae. Conse-
quently, we consider decidable cases. Complementary to the above, we show that the satisfia-
bility in an arbitrary free monoid A* of quantifier free positive formulae over word equations
(formulae obtained by iteratively applying only conjunction and disjunction to word equations
of the form U = V'), in which we have at most one terminal a € A (appearing zero or several
times) and no restriction on the usage of variables, enhanced with linear length constraints, is
decidable, and, moreover, NP-complete. The decidability is preserved when considering pos-
itive Xp-formulae of this kind, as opposed to the case of arbitrary ¥, terminal-free formulae,
mentioned above. Moreover, if we allow negated equations in the quantifier-free formulae (so
arbitrary X ;-formulae) with at most one terminal, and length constraints, we obtain a decidable
theory if and only if the general theory of equations with length constraints is decidable. Putting
together these results, we draw a rather precise border between the decidable and undecidable
subclasses of the X;-fragment over word equations, defined by restrictions on the number of
terminals allowed to occur in the equations and the presence or absence of inequations. As
a corollary, we can show that deciding the truth of arbitrary formulae from the positive X,-
fragment of FO(A*,-) (i.e., 3*V* quantified positive formulae), without length constraints, is
decidable. The resulting proof follows arguments partly related to those in [23, 9]. This re-
sult is strongly related to the work of [27, 12, 10], in which it was shown that the validity of
sentences from the positive IT-fragment of FO(A*,-) (i.e., the quantifier alternation is V*3*) is
undecidable, as well as to the results of [29] in which it was shown that the truth of arbitrarily
quantified positive formulae over equations is decidable over an infinite alphabet of terminals.

We then extend our approach in a way partly motivated by the practical aspects of solving
word equations. Most equations that can be successfully solved by string solvers (e.g., Z3str3)
must be in solved form [12], or must not contain overlapping variables [31]. In a sense, this
suggests that in practice it is interesting to find equations with restricted form that can be solved
in reasonable time. We analyse, from a theoretical point of view, one of the simplest classes of
equations that are not in solved form or contain equations with overlapping variables, namely
strictly regular-ordered equations (each variable occurs exactly once in each side, and the order
in which the variables occur is the same). We show that the satisfiability of such equations, even
when enhanced with various predicates, is decidable. In particular we show that when extended
with regular constraints (given by DFAs), linear length constraints, abelian equivalence con-
straints (two variables should be substituted for abelian-equivalent words), subword constraints
(one variable should be a (scattered) subword of another), and F g, constraints (two variables
should have the same number of occurrences of a letter a), the satisfiability problem remains
NP-complete. Thus, there is hope that they can be solved reasonably fast by string solvers

40

Joel D. Day, Vijay Ganesh, Paul He, Florin Manea, Dirk Nowotka

based on, e.g., SAT-solvers. This line of results is also related to the investigations initiated in
[24, 7], in which the authors were interested in the complexity of solving equations of restricted
form. In the most significant result of [7], it was shown that deciding the satisfiability of strictly
regular-ordered equations (with or without regular constraints) is NP-complete, which makes
this class of word equations one of simplest known classes of word equations that are hard to
solve. Although these results regard a very restricted class of equations, they might provide
some insights in tackling harder classes, such as, e.g., quadratic equations.

References

[1]

(2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

P. A. ABDULLA, M. F. ATIG, Y. CHEN, L. HOLIK, A. REZINE, P. RUMMER, J. STENMAN, Norn:
An SMT Solver for String Constraints. In: Proc. CAV 2015. LNCS 9206, 2015, 462-469.

A. AYDIN, L. BANG, T. BULTAN, Automata-Based Model Counting for String Constraints. In:
Proc. CAV 2015. LNCS 9206, 2015, 255-272.

C. BARRETT, C. L. CoNwAY, M. DETERS, L. HADAREAN, D. JovaNovIC, T. KING,
A. REYNOLDS, C. TINELLI, CVC4. In: Proc. CAV 2011. LNCS 6806, 2011, 171-177.

M. BERZISH, V. GANESH, Y. ZHENG, Z3str3: A string solver with theory-aware heuristics. In:
Proc. FMCAD 2017.1EEE, 2017, 55-59.

J. BREMER, D. D. FREYDENBERGER, Inclusion problems for patterns with a bounded number of
variables. Inf. Comput. 220 (2012), 15-43.

J. R. BUCHI, S. SENGER, Definability in the existential theory of concatenation and undecidable
extensions of this theory. Z. fiir math. Logik Grundlagen d. Math. 47 (1988), 337-342.

J. D. DAY, F. MANEA, D. NOWOTKA, The Hardness of Solving Simple Word Equations. In: Proc.
MFCS 2017. LIPIcs 83, 2017, 18:1-18:14.

V. DIEKERT, A. JEZ, W. PLANDOWSKI, Finding all solutions of equations in free groups and
monoids with involution. Inf. Comput. 251 (2016), 263-286.

V. DIEKERT, M. LOHREY, Existential and Positive Theories of Equations in Graph Products. The-
ory Comput. Syst. 37 (2004) 1, 133-156.

V. G. DURNEV, Undecidability of the positive V3-theory of a free semigroup. Sib. Math. J. 36.5
(1995), 917-929.

D. D. FREYDENBERGER, D. REIDENBACH, Bad news on decision problems for patterns. Infor-
mation and Computation 208 (2010) 1, 83-96.

V. GANESH, M. MINNES, A. SOLAR-LEZAMA, M. C. RINARD, Word Equations with Length
Constraints: What’s Decidable? In: HVC 2012, Revised Selected Papers. LNCS 7857, 2013, 209—
226.

S. HALFON, P. SCHNOEBELEN, G. ZETZSCHE, Decidability, complexity, and expressiveness of
first-order logic over the subword ordering. In: Proc. LICS 2017. IEEE Computer Society, 2017,
1-12.

The Satisfiability of Word Equations: Decidable and Undecidable Theories 41

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]
(22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

D. HILBERT, Mathematische probleme. Nachrichten von der Gesellschaft der Wissenschaften zu
Gottingen, Mathematisch-Physikalische Klasse 1900 (1900), 253-297.

A. JEZ, Recompression: a simple and powerful technique for word equations. In: Proc. STACS
2013. LIPIcs 20, 2013, 233-244.

A. JEZ, Word Equations in Nondeterministic Linear Space. In: Proc. ICALP 2017. LIPIcs 80,
2017, 95:1-95:13.

T. JIANG, A. SALOMAA, K. SALOMAA, S. YU, Decision Problems for Patterns. J. Comput. Syst.
Sci. 50 (1995) 1, 53-63.

J. KARHUMAK]I, F. MIGNOSI, W. PLANDOWSKI, The expressibility of languages and relations by
word equations. Journal of the ACM (JACM) 47 (2000) 3, 483-505.

A. KIEZUN, V. GANESH, P. J. Guo, P. HOOIMEUIJER, M. D. ERNST, HAMPI: a solver for string
constraints. In: Proc. ISSTA 2009. ACM, 2009, 105-116.

A. W. LIN, P. BARCELO, String solving with word equations and transducers: towards a logic for
analysing mutation XSS. In: ACM SIGPLAN Notices. 51, ACM, 2016, 123-136.

M. LOTHAIRE, Combinatorics on Words. Addison-Wesley, 1983.

G. S. MAKANIN, The problem of solvability of equations in a free semigroup. Shornik: Mathe-
matics 32 (1977) 2, 129-198.

G. S. MAKANIN, Decidability of the Universal and Positive Theories of a Free Group. Mathematics
of the USSR-Izvestiya 25 (1985) 1, 75.

F. MANEA, D. NOWOTKA, M. L. SCHMID, On the Solvability Problem for Restricted Classes of
Word Equations. In: Proc. DLT 2016. LNCS 9840, 2016, 306-318.

Y. V. MATIYASEVICH, A connection between systems of words-and-lengths equations and
Hilbert’s tenth problem. Zapiski Nauchnykh Seminarov POMI 8 (1968), 132—144.

W. PLANDOWSKI, Satisfiability of word equations with constants is in PSPACE. In: Proc. FOCS
1999. IEEE, 1999, 495-500.

W. V. QUINE, Concatenation as a basis for arithmetic. J. Symb. Log. 11 (1946) 4, 105-114.

M.-T. TRINH, D.-H. CHU, J. JAFFAR, Progressive Reasoning over Recursively-Defined Strings.
In: Proc. CAV 2016. LNCS 9779, 2016, 218-240.

J. M. VAZENIN, B. V. ROZENBLAT, Decidability of the positive theory of a free countably gener-
ated semigroup. Math. USSR Sb. 44.1 (1983), 109-116.

F. YU, M. ALKHALAF, T. BULTAN, STRANGER: An Automata-based String Analysis Tool for
PHP. In: Proc. TACAS 2010. LNCS 6015, 2010.

Y. ZHENG, V. GANESH, S. SUBRAMANIAN, O. TRIPP, M. BERZISH, J. DOLBY, X. ZHANG,

Z3str2: an efficient solver for strings, regular expressions, and length constraints. Formal Methods
in System Design 50 (2017) 2-3, 249-288.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 42—42.

Iterative Arrays with Bounded Communication
Andreas Malcher™

(AInstitut fiir Informatik, Universitit Giessen,

Arndtstr. 2, 35392 Giessen, Germany

andreas.malcher@informatik.uni-giessen.de

Zusammenfassung

Iterative arrays with restricted internal inter-cell communication are investigated. A
quantitative measure for the communication is defined by counting the number of uses
of the links between cells and it is differentiated between the sum of all communications
of an accepting computation and the maximum number of communications per cell occur-
ring in accepting computations. The computational complexity of both classes of devices
is investigated and put into relation. In addition, a strict hierarchy depending on the ma-
ximum number of communications per cell is established. Finally, it is shown that almost
all commonly studied decidability questions are not semidecidable for iterative arrays with
restricted communication and, moreover, it is not semidecidable as well whether a given
iterative array belongs to a given class with restricted communication.

,7/-ﬁEORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitéit Halle-Wittenberg, Technischer Bericht 18-1, S. 43-46.

Exact and Approximated Computation of the Locality
Number of Words

Joel D. Day® Pamela Fleischmann® Florin Manea'?)
Markus L. Schmid®

(4Kiel University, Germany,

{jda,fpa,flm}@informatik.uni-kiel.de

(B)Trier University, Germany,

mlschmid@mlschmid.de

Abstract

We investigate the problem of computing, for a given word, its locality number, a re-
cently introduced structural complexity measure for words with algorithmic applications
in matching patterns with variables. We answer the open question whether the locality
number can be efficiently computed by showing the decision variant of the problem to be
NP-complete. Additionally, we present a pathwidth-based approximation algorithm and
improve on the known exact algorithms.

1. Overview

In this work, we consider the locality of words (also called strings), which is a structural pa-
rameter that has been first introduced in [S]. More precisely, a word is k-local if there exists an
order of the symbols occurring in that word such that, if we mark the symbols in the respective
order (which is called a marking sequence), at each step there are at most £ contiguous blocks
of marked symbols in the word. This k is called the marking number of that marking sequence.
The locality number of a word is the smallest k& for which that word is k-local, or, in other
words, the minimum marking number over all marking sequences. For example, the marking
sequence o = (x,y,z) marks the word o = xyxyzxz as follows (marked blocks are illustrated
by overlines): xyxyzxz, XyXyzxz, XyXyzXz, Xyxyzxz, thus, the marking number of o is 3. In
fact, all marking sequences for & have a marking number of 3, except (y,x,z), for which it is
2: Xyxyzxz, XyXyZXZ, Xyxyzxz. Thus, the locality number of «, denoted by loc(«), is 2. The
locality number of a word describes how many separate (or isolated) marked regions must at
least be maintained in exploring the word; thus, it can be interpreted as a complexity measure
(if we associate some cost or resource per marked region).

The original motivation for the concept of locality comes from pattern matching [5]. A pat-
tern is a word that consists of terminal symbols (e. g., a, b, c), treated as constants, and variables
(e.g., x1,x2,73,...). A pattern is mapped to a word by substituting the variables by strings of
terminals. For example, xzbabxyx; can be mapped to acacbabcc or ccbabaa by the sub-
stitutions (z; — ac,xp — ¢) and (x] — ¢,z — a), respectively. If a pattern o can be mapped

44 Joel D. Day, Pamela Fleischmann, Florin Manea, Markus L. Schmid

to a given string of terminals w, we say that o matches w. Deciding whether a given pattern
matches a given word is one of the most important problems that arise in the study of patterns
with variables. Many applications appear in domains like combinatorics on words (word equa-
tions [13], unavoidable patterns [15]), pattern matching (generalized function matching [1]),
language theory (pattern languages [2]), learning theory (inductive inference [2, 6, 16, 17],
PAC-learning [14]), database theory (extended conjunctive regular path queries [3]), as well
as in practice, e.g., extended regular expressions with backreferences [11, 12], used in pro-
gramming languages like Perl, Java, Python, etc. Unfortunately, the matching problem is NP-
complete [2] in general. This is especially bad for some computational tasks on patterns which
implicitly solve the matching problem and are therefore also intractable. For instance, this is
the case of the task of finding descriptive patterns for a set of strings [8], which is useful in the
context of learning theory. Consequently, a thorough analysis [5, 7, 9, 10, 18, 19] of the com-
plexity of the matching problem has shown that some classes of patterns, defined by restricting
structural parameters, can be matched in polynomial time.

All these “tractability parameters™ have a unifying theory: in [18] it has been shown that any
class of patterns with bounded treewidth (for suitable graph representations) can be matched in
polynomial-time and virtually all structural parameters that lead to tractability investigated in [5,
7, 18, 19] are also bounding the treewidth (the efficiently matchable classes investigated in [4]
are one of the rare cases with an unbounded treewidth). However, this theory is only suitable for
proving tractability of certain classes of patterns, while actually computing and algorithmically
exploiting the treewidth of a pattern is rather problematic (see the discussion in [7, 18]). The
tractability parameters, on the other hand, are formulated in a way that gives some kind of
obvious dynamic programming approach, e. g., the scope coincidence degree, investigated in [7,
18], is just the maximum number of variables that can be “active” at the same time (i. e., they
have already occurred and will occur again) when moving through the pattern from left to
right (thus, bounding the number of factors that have to be stored by a dynamic programming
algorithm). Similarly, for the locality number, the corresponding marking sequence can be
seen as an instruction for a dynamic programming algorithm: assigning the variables in the
order given by the marking sequence, the number of factors that we have to keep track of is
bounded by the locality number (see [S] for details). Another strong point for the usefulness
of most of these parameters (in contrast to the treewidth) is that they are all string parameters
with simple definitions that can be computed very easily. The notable exception is the locality
number, which has also a simple string-based definition, but seems to be much more difficult to
compute. In this sense, the locality number is the string parameter that covers best the treewidth
of a string.

Independent of its algorithmic application described above, the locality is also an interesting
structural parameter of words in its own right, the combinatorial properties of which deserve
further investigation. In combinatorics on words, it is not unusual to define classes of words
by imposing that a certain condition holds for a word while cancelling iteratively some letters
of that word (e. g., correctly parenthesised words can be defined in this way). In this regard,
k-local words are those words for which there exists an ordering of their letters, such that if we
iteratively cancel all the occurrences of the letters according to this ordering, we have at each
step at most £ maximal blocks of cancelled letters. In this context, connections between 1- and
2-local words and correctly parenthesised words were established in [5].

For the algorithmic application, as well as for the further combinatorial investigation of the

Exact and Approximated Computation of the Locality Number of Words 45

concept of locality, the arguably most important problem is the computation of this parameter
(and corresponding marking sequences). This paper is devoted to the investigation of this prob-
lem. A start in this direction has been done by [5], where it is shown that the k-locality of a word
o can be checked in time n°*) (or, in parameterised complexity terms, the problem is in XP
with respect to the parameter k). However, the focus of [5] is on using marking sequences for
matching patterns with variables, while it has been left open if computing the locality number
is a computationally hard problem.

Our Contribution — We first investigate the natural decision variant of the problem of comput-
ing the locality number, i. e., deciding, for a given word « and number %, whether loc(«) < k.
We show that this problem is NP-complete, which identifies the computation of the locality
number as a computationally hard problem and answers the main open question from [5]. A
natural next step is to investigate the approximability of this problem, i.e., given a word, com-
pute a marking sequence with small marking number (note that for algorithmic applications
we require good marking sequences rather than the exact locality number). In this regard, we
first demonstrate that the obvious greedy approach of choosing the next symbol to be marked
according to some kind of greedy strategy (e. g., the symbol that yields the smallest number of
marked blocks) does not yield an approximation algorithm for many natural choices of greedy
strategies. We then show that, for a natural graph-representation for words, the width of an
optimal path-decomposition of the graph representation of a word « ranges between loc(a) and
2loc(«). This directly leads to a meta-theorem, which allows positive approximation results for
computing marking sequences to be derived from the numerous results on the approximation
of path-decompositions. More precisely, we can show that there is a factor-2 approximation
algorithm for computing marking sequences that runs in fpt-time (with respect to the locality
number), and that there is also a polynomial-time algorithm that approximates marking se-
quences within factor O(y/log(opt)log(n)) of the optimum. The questions whether there are
polynomial-time constant-factor approximation algorithms for marking sequences or whether
computing the locality number is fixed-parameter tractable (with respect to the bound on the
locality number) are left open and assumed to be rather challenging. Note that the former is a
longstanding open question for path-decompositions.

The connection between pathwidth and locality number is not strong enough to use this re-
duction for exact algorithms. Thus, we also discuss exact algorithms for computing the locality
number (and a corresponding marking sequence) of a word. We show that if the number ¢ of
different letters that occur in a word is logarithmic with respect to its length then we can ex-
actly solve the problem in polynomial time. In the general case, considering ¢ as a parameter,
an O*(¢!) fpt-algorithm is obvious, but we can also devise a more sophisticated fpt-algorithm
with running-time O* (2£). Finally, it follows that the pattern matching problem with variables,
parameterised by the locality number of the pattern, even when an optimal marking sequence is
an explicit part of the input, is W[1]-hard.

References
[1] A. AMIR, I. NOR, Generalized function matching. J. Discrete Algoritms 5 (2007), 514-523.

[2] D. ANGLUIN, Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21 (1980), 46—62.

46

Joel D. Day, Pamela Fleischmann, Florin Manea, Markus L. Schmid

(3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

(12]
[13]

[14]

[15]
[16]

(17]
(18]

[19]

P. BARCELO, L. LIBKIN, A. W. LIN, P. T. Woo0D, Expressive Languages for Path Queries over
Graph-Structured Data. ACM Trans. Database Syst. 37 (2012).

J. DAY, P. FLEISCHMANN, F. MANEA, D. NOWOTKA, M. L. SCHMID, On Matching Generalised
Repetitive Patterns. In: Proc. DLT. LNCS, 2018. To appear.

J. D. DAY, P. FLEISCHMANN, F. MANEA, D. NOWOTKA, Local Patterns. In: Proc. FSTTCS.
LIPIcs 93, 2017, 24:1-24:14.

T. ERLEBACH, P. ROSSMANITH, H. STADTHERR, A. STEGER, T. ZEUGMANN, Learning one-
variable pattern languages very efficiently on average, in parallel, and by asking queries. Theoret.
Comput. Sci. 261 (2001), 119-156.

H. FERNAU, F. MANEA, R. MERCAS, M. L. SCHMID, Pattern Matching with Variables: Fast
Algorithms and New Hardness Results. In: Proc. STACS. LIPIcs 30, 2015, 302-315.

H. FERNAU, F. MANEA, R. MERCAS, M. L. SCHMID, Revisiting Shinohara’s Algorithm for
Computing Descriptive Patterns. Theoretical Computer Science 733 (2016), 44-54.

H. FERNAU, M. L. SCHMID, Pattern matching with variables: A multivariate complexity analysis.
Inf. Comput. 242 (2015), 287-305.

H. FERNAU, M. L. SCHMID, Y. VILLANGER, On the Parameterised Complexity of String Mor-
phism Problems. Theory Comput. Syst. 59 (2016) 1, 24-51.

D. D. FREYDENBERGER, Extended Regular Expressions: Succinctness and Decidability. Theory
Comput. Syst. 53 (2013), 159-193.

J. E. F. FRIEDL, Mastering Regular Expressions. 3rd edition, O’Reilly, Sebastopol, CA, 2006.

J. KARHUMAKI, W. PLANDOWSKI, F. MIGNOSI, The Expressibility of Languages and Relations
by Word Equations. J. ACM 47 (2000), 483-505.

M. KEARNS, L. PITT, A polynomial-time algorithm for learning k-variable pattern languages from
examples. In: Proc. COLT. 1989, 57-71.

M. LOTHAIRE, Algebraic Combinatorics on Words. Cambridge University Press, 2002.

Y. K. NG, T. SHINOHARA, Developments from enquiries into the learnability of the pattern lan-
guages from positive data. Theoret. Comput. Sci. 397 (2008), 150-165.

D. REIDENBACH, Discontinuities in pattern inference. Theoret. Comput. Sci. 397 (2008), 166—193.

D. REIDENBACH, M. L. ScHMID, Patterns with bounded Treewidth. Inf. Comput. 239 (2014),
87-99.

T. SHINOHARA, Polynomial Time Inference of Pattern Languages and Its Application. In: Proc.
IBM MFCS. 1982, 191-209.

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 47-49.

On Ambiguity of Max-Plus Tree Automata
Erik Paul®

(Dnstitute of Computer Science, Leipzig University, 04109 Leipzig, Germany

epaul@informatik.uni-leipzig.de

Abstract

A max-plus tree automaton is a finite-state machine which assigns real numbers to trees.
In this talk, we consider decidability results for max-plus tree automata which are linked to
the ambiguity of the respective automata. The ambiguity of a max-plus tree automaton is
determined by the maximum number of valid runs there exist on each tree. For finitely am-
biguous max-plus tree automata, we consider the equivalence, unambiguity, sequentiality,
and finite sequentiality problems.

A max-plus automaton is a finite automaton with transition weights in the real numbers. To
each word, it assigns the maximum weight of all accepting paths on the word, where the weight
of a path is the sum of the path’s transition weights. Max-plus automata and their min-plus
counterparts are weighted automata [21, 20, 13, 3, 5] over the max-plus or min-plus semiring.
Under varying names, max-plus and min-plus automata have been studied and employed many
times in the literature. They can be used to determine the star height of a language [8], to decide
the finite power property [22, 23] and to model certain timed discrete event systems [6, 7].
Additionally, they appear in the context of natural language processing [14].

For practical applications, the decidable properties of an automaton model are usually of
great interest. Typical problems considered include the emptiness, universality, inclusion, equiv-
alence, sequentiality, finite sequentiality, and unambiguity problems. We consider the last four
of these problems for finitely ambiguous automata, which are automata in which the number
of accepting paths for every word is bounded by a global constant. If there is at most one ac-
cepting path for every word, the automaton is called unambiguous. 1t is called deterministic or
sequential if for each pair of a state and an input symbol, there is at most one valid transition
into a next state. It is known [11] that finitely ambiguous max-plus automata are strictly more
expressive than unambiguous max-plus automata, which in turn are strictly more expressive
than deterministic max-plus automata.

Let us quickly recall the considered problems and the related results. The equivalence prob-
lem asks whether two automata are equivalent, which is the case if the weights assigned by
them coincide on all words. In general, the equivalence problem is undecidable [12] for max-
plus automata, but for finitely ambiguous max-plus automata it becomes decidable [24, 9]. The
sequentiality problem asks whether for a given automaton, there exists an equivalent determin-
istic automaton. This was shown to be decidable by Mohri [14] for unambiguous max-plus
automata. The unambiguity problem asks whether for a given automaton, there exists an equiv-
alent unambiguous automaton. This problem is known to be decidable for finitely ambiguous

(4)This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1763 (QuantLA).

48 Erik Paul

and even polynomially ambiguous max-plus automata [11, 10]. In conjunction with Mohri’s
results, it follows that the sequentiality problem is decidable for these classes of automata as
well. Finally, the finite sequentiality problem asks whether for a given automaton, there ex-
ist finitely many deterministic automata whose pointwise maximum is equivalent to the given
automaton. Note that the class of automata which possess a finitely sequential representation
is expressively incomparable to the class of unambiguous max-plus automata, and it is strictly
less expressive than the class of finitely ambiguous automata [11]. It is know that the finite
sequentiality problem is decidable for finitely ambiguous max-plus automata [1].

In this talk, we consider these four problems for finitely ambiguous max-plus tree automata,
which are max-plus automata that operate on trees instead of words. In the form of probabilis-
tic context-free grammars, max-plus tree automata are commonly employed in natural language
processing [19]. Recently, we were able to show that the equivalence, unambiguity, and sequen-
tiality problems are decidable for finitely ambiguous max-plus tree automata [18], and that the
finite sequentiality problem is decidable for unambiguous max-plus tree automata.

Our approach to the decidability of the equivalence problem uses ideas from [9]. We reduce
the equivalence problem to the same decidable problem, namely the decidability of the existence
of an integer solution for a system of linear inequalities [15]. However, instead of the inductive
argument used in [9], we employ Parikh’s theorem [16, Theorem 2], an idea suggested by
Mikotaj Bojariczyk. Our solution of the equivalence problem can be applied to weighted logics.
In [17], a fragment of a weighted logic is shown to have the same expressive power as finitely
ambiguous weighted tree automata. Over the max-plus semiring, equivalence is decidable for
formulas of this fragment due to our results.

The decidability of the unambiguity problem employs ideas from [11]. Here, we show how
the dominance property can be generalized to max-plus tree automata. To show the decidability
of the sequentiality problem, we first combine results from [4] and [14] to show the decidability
of this problem for unambiguous max-plus tree automata, and then combine this result with the
decidability of the unambiguity problem.

For the finite sequentiality problem, we use ideas from [2] and generalize the fork property
to the tree fork property. In comparison to the fork property, the proof of sufficiency of the tree
fork property is much more involved due to the non-linear structure of trees.

References

[1] S. BALA, Which Finitely Ambiguous Automata Recognize Finitely Sequential Functions? In:
K. CHATTERJEE, J. SGALL (eds.), Proc. MFCS. Springer, 2013, 86-97.

[2] S. BALA, A. KONINSKI, Unambiguous Automata Denoting Finitely Sequential Functions. In:
A. DEDIU, C. MARTIN-VIDE, B. TRUTHE (eds.), Proc. LATA. LNCS 7810, Springer, 2013, 104—
115.

[3] J. BERSTEL, C. REUTENAUER, Rational Series and Their Languages. Springer, 1988.

[4] M. BUCHSE, J. MAY, H. VOGLER, Determinization of Weighted Tree Automata Using Factoriza-
tions. Journal of Automata, Languages and Combinatorics 15 (2010) 3/4, 229-254.

[5] M. DROSTE, W. KUICH, H. VOGLER, Handbook of Weighted Automata. Springer, 2009.

On Ambiguity of Max-Plus Tree Automata 49

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

S. GAUBERT, Performance evaluation of (max,+) automata. IEEE T. Automat. Contr. 40 (1995) 12,
2014-2025.

S. GAUBERT, J. MAIRESSE, Modeling and analysis of timed Petri nets using heaps of pieces. IEEE
T. Automat. Contr. 44 (1999) 4, 683-697.

K. HASHIGUCHI, Algorithms for Determining Relative Star Height and Star Height. Inf. Comput.
78 (1988) 2, 124-169.

K. HASHIGUCHI, K. ISHIGURO, S. JIMBO, Decidability of The Equivalence Problem for Finitely
Ambiguous Finance Automata. IJAC 12 (2002) 3, 445-461.

D. KIRSTEN, S. LOMBARDY, Deciding Unambiguity and Sequentiality of Polynomially Ambigu-
ous Min-Plus Automata. In: S. ALBERS, J. M. MARION (eds.), Proc. STACS. LIPIcs 3, LZI, 2009,
589-600.

I. KLIMANN, S. LOMBARDY, J. MAIRESSE, C. PRIEUR, Deciding unambiguity and sequentiality
from a finitely ambiguous max-plus automaton. Theor. Comput. Sci. 327 (2004) 3, 349-373.

D. KRrOB, The Equality Problem for Rational Series with Multiplicities in the tropical Semiring is
Undecidable. IJAC 4 (1994) 3, 405-426.

W. KUICH, A. SALOMAA, Semirings, Automata, Languages. Springer, 1986.

M. MOHRI, Finite-State Transducers in Language and Speech Processing. Comput. Linguist. 23
(1997) 2, 269-311.

G. L. NEMHAUSER, L. A. WOLSEY, Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

R. J. PARIKH, On Context-Free Languages. Journal of the Association for Computing Machinery
13 (1966) 4, 570-581.

E. PAUL, On Finite and Polynomial Ambiguity of Weighted Tree Automata. In: S. BRLEK,
C. REUTENAUER (eds.), Proc. DLT. LNCS 9840, Springer, 2016, 368-379.

E. PAUL, The Equivalence, Unambiguity and Sequentiality Problems of Finitely Ambiguous Max-
Plus Tree Automata are Decidable. In: K. G. LARSEN, H. L. BODLAENDER, J.-F. RASKIN (eds.),
Proc. MFCS. LIPIcs 83, LZI, 2017, 53:1-53:13.

S. PETROV, Latent Variable Grammars for Natural Language Parsing. In: Coarse-to-Fine Natural
Language Processing. chapter 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, 7-46.

A. SALOMAA, M. SOITTOLA, Automata-Theoretic Aspects of Formal Power Series. Springer,
1978.

M.-P. SCHUTZENBERGER, On the definition of a family of automata. Inform. Control 4 (1961)
2-3, 245 -270.

I. SIMON, Limited Subsets of a Free Monoid. In: Proc. FOCS. IEEE Computer Society, 1978,
143-150.

I. SIMON, Recognizable Sets with Multiplicities in the Tropical Semiring. In: M. CHYTIL,
L. JANIGA, V. KOUBEK (eds.), Proc. MFCS. LNCS 324, Springer, 1988, 107-120.

A. WEBER, Finite-Valued Distance Automata. Theor. Comput. Sci. 134 (1994) 1, 225-251.

’7/77on RIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 50-53.

Composition Closure of Linear Weighted
Extended Top-Down Tree Transducers

Zoltan FiilopY Andreas Maletti®

(A)Department of Foundations of Computer Science, University of Szeged

Arpéd tér 2, H-6720 Szeged, Hungary
fulop@inf.u-szeged.hu

(B)Department of Mathematics and Computer Science, Universitit Leipzig

PO Box 100 920, 04009 Leipzig, Germany

maletti@informatik.uni-leipzig.de

Abstract

Linear weighted extended top-down tree transducers with regular look-ahead and weights
from a semiring are formal models of tree transformations that are used in syntax-based
statistical machine translation. The composition hierarchies of some restricted versions of
such weighted tree transducers (also without regular look-ahead) are considered. In par-
ticular, combinations of the restrictions of e-freeness (all rules consume input), nondele-
tion, and strictness (all rules produce output) are considered. The composition hierarchy
is shown to be finite for all but one e-free variant of these weighted transducers over any
commutative semiring.

Linear extended top-down tree transducers (I-xt) were introduced (under a different name)
and investigated already in [1]. We present them in the framework of synchronous grammars [2]
since this framework is better known in syntax-based statistical machine translation, where these
transducers are applied, and since we utilize some results of [4, 11], where the same framework
is used. Let us introduce I-xt informally. An I-xt M has a finite set of states and finitely many
rules of the form (¢,q,r), where ¢ is a state and the left- and right-hand side ¢ and r are trees,
which may also contain state-labeled leaves such that each state in r also occurs in ¢. Linear-
ity requires that each state occurs at most once both in ¢ and in 7. In particular, in e-rules the
left-hand side ¢ is just a state, which means that applications of them consume no part of the
input tree. Symmetrically, in non-strict rules the right-hand side r is just a state, which means
that applications of them produce no output. The semantics of M is defined by means of syn-
chronous rewriting using the derivation relation =-. It is defined over sentential forms, which are
triples (&, L, () consisting of trees £ and ¢ with state-labeled leaves and a set L of links. A link
is a pair (u,v) of positions pointing to occurrences of the same state in the trees £ and , respec-
tively. A rule (¢,q,r) can be applied to a sentential form (&, L, () if there is a link (u,v) € L such
that v and v point to an occurrence of the state ¢. In this case we write (§,L,() = (¢, L', '),

(A)Supponed by the NKFI grant no. K 108 448.
(B)Supported by the research training group 1763 “QuantLA” of the German Research Foundation (DFG).

Composition Closure of Linear Weighted Extended Top-Down Tree Transducers 51

where the sentential form (¢, L’,(’) is obtained by replacing the linked occurrences of ¢ in
¢ and ¢ by ¢ and r, respectively. In addition, L is updated to include links induced by occur-
rences of the same state in ¢ and r. The initial sentential form is (go, {(£,¢)},qo), in which qq is
the initial state of M, and we apply derivation steps until no occurrences of linked states re-
main; i.e., until we reach a sentential form (¢,(),u). Any remaining (unlinked) state occurrence
in the input tree ¢ can then be replaced by an arbitrary tree. An instance of ¢ is obtained by
replacing all state occurrences and () is the set of all instances of ¢. The tree transformation
induced by M consists of all pairs (¢, u) such that (qo, {(¢,¢)},q0) = (¢,0,u) and ¢’ € I(t). In
order to increase their expressive power, 1-xt can be equipped with regular look-ahead, which
restricts the instances /(¢) such that an unlinked occurrence of a state ¢ can only be replaced
by an element of a given regular tree language ¢(q). Regular look-ahead for classical top-down
tree transducers was invented in [3], and we abbreviate ‘1x-t with regular look-ahead’ by 1x-tR.
We refer to [4] for the exact definition of 1x-tR.

The main computation model of our paper is the weighted 1x-tR, abbreviated by Iwx-tR,
which is able to express quantitative properties of the tree transformations. In such an Iwx-tR
a weight from a semiring K is associated to each rule, and these rule weights are multiplied in
a derivation. Provided that several derivations exist, then these derivation weights are summed
up. In this manner, an Iwx-t®)M induces a weighted tree transformation, which assigns a
weight || M ||k (¢,u) € K to each pair (¢,u) of trees. It turned out that both Iwx-t and lwx-tR over
the probabilistic semiring can serve as formal models of tree transformations which are used in
syntax-based statistical machine translation [7, 6]. Their expressive power and other properties
are well studied [13, 5, 9, 10, 8, 11].

In this paper we focus on the composition closure of 1-wxt and 1-wxt® without e-rules
(#1-wxt and #1-wxtR, respectively) and some of their restricted subclasses (in order to guar-
antee that all summations remain finite). Our motivation is that complex systems are often
specified in terms of compositions of simpler tree transformations [14], which manage only a
part of the overall transformation, because they are easier to develop, train, and maintain [7].
More precisely, let C be a class of weighted tree transformations (e.g. the class of all weighted
tree transformations induced by #1-wxtR obeying some further restrictions). The composition
hierarchy of C is C C C2C (3 C---, where C" denotes the n-fold composition of C. It is either
infinite (i.e., C" C C"*! for all n) or finite (i.e., C* = C"*! for some n). In the latter case,
the minimal such n is called the collapse level and is interesting since all compositions can be
reduced to this length.

Now let us introduce the classes, for which we will investigate the composition hierarchy.
The additional standard restrictions we consider are strictness (‘s’), which requires that the
right-hand side r is not a single state, and nondeletion (‘n’), which means that each state in
the left-hand side ¢ occurs also in the right-hand side r, in both cases for each rule (¢,q,r)
of the #1-wxtR. Thus, for instance #sl-wxtR abbreviates the expression ‘strict #I-wxtR’. The
class of all weighted tree transformations induced by certain kind of #1-wxt® is denoted by
typesetter letters so for instance #s1-WXT®(KK) stands for the set of all weighted tree transfor-
mations computable by #sl-wxtR over the semiring K. We consider the composition hierarchies
of the classes #ns1-WXT(KK), which is also investigated in [12], and #s1-WXT(K), #s1-WXT?(K),
#1-WXTR(KK), and #1-WXT(K). As main result we show that the composition hierarchies of these
classes collapse at levels 2, 2, 2, 3, and 4, respectively, for an arbitrary commutative semiring K.
We achieve our results by lifting the results [1, Theorem 6.2] and [4, Theorems 26, 31, 33, 34],

52 Zoltan Fiilop, Andreas Maletti

where it is shown that the corresponding hierarchies in the unweighted cases collapse at the
same levels. To this end, we decompose an #1-wxtR into a weighted relabeling that handles
all the weights and the nondeterminism, and a BOOLEAN and functional #l-wxtR that is also
unambiguous. Moreover, we show that we can compose any such relabeling to the right of any
l-wxtR. These two constructions together will allow us to take all ZI-wxt® in a composition
chain into a particularly simple normal form that is very close to the unweighted case. After
some additional technical tailoring, we can utilize the mentioned results [1, 4] and lift them
to the corresponding weighted tree transducers over any commutative semiring. We note that
in [4] the composition hierarchies of some further classes induced by I-wxtR with e-rules are
shown to be infinite.

References

[1] A. ARNOLD, M. DAUCHET, Morphismes et Bimorphismes d’Arbres. Theoret. Comput. Sci. 20
(1982) 1, 33-93.

[2] D. CHIANG, An Introduction to Synchronous Grammars. In: N. CALZOLARI, C. CARDIE, P. Is-
ABELLE (eds.), Proc. 44th Ann. Meeting ACL. Association for Computational Linguistics, 2006.
Part of a tutorial given with Kevin Knight.

[3] J. ENGELFRIET, Top-down Tree Transducers with Regular Look-ahead. Math. Systems Theory 10
(1977) 1, 289-303.

[4] J. ENGELFRIET, Z. FULOP, A. MALETTI, Composition Closure of Linear Extended Top-down
Tree Transducers. Theory Comput. Systems 60 (2017) 2, 129-171.

[5] Z. FOLOP, A. MALETTI, H. VOGLER, Weighted Extended Tree Transducers. Fundam. Inform.
111 (2011) 2, 163-202.

[6] J. GRAEHL, K. KNIGHT, J. MAY, Training Tree Transducers. Comput. Linguist. 34 (2008) 3,
391-427.

[7]1 K. KNIGHT, J. GRAEHL, An Overview of Probabilistic Tree Transducers for Natural Language
Processing. In: A. F. GELBUKH (ed.), Proc. 6th Int. Conf. CICLing. LNCS 3406, Springer, 2005,
1-24.

[8] A. LAGOUTTE, A. MALETTI, Survey: Weighted extended top-down tree transducers — Part III:
Composition. In: W. KUICH, G. RAHONIS (eds.), Proc. Workshop Algebraic Foundations in Com-
puter Science. LNCS 7020, Springer, 2011, 272-308.

[91 A. MALETTI, Survey: Weighted Extended Top-down Tree Transducers — Part I: Basics and Ex-
pressive Power. Acta Cybernet. 20 (2011) 2, 223-250.

[10] A. MALETTI, Survey: Weighted Extended Top-down Tree Transducers — Part II: Application in
Machine Translation. Fundam. Inform. 112 (2011) 2-3, 239-261.

[11] A. MALETTI, The power of weighted regularity-preserving multi bottom-up tree transducers. Int.
J. Found. Comput. Sci. 26 (2015) 7, 987-1005.

[12] A. MALETTI, Compositions of Tree-to-Tree Statistical Machine Translation Models. In: S. BR-
LEK, C. REUTENAUER (eds.), Proc. 20th Int. Conf. DLT. LNCS 9840, Springer, 2016, 293-305.

Composition Closure of Linear Weighted Extended Top-Down Tree Transducers 53

[13] A. MALETTI, J. GRAEHL, M. HOPKINS, K. KNIGHT, The Power of Extended Top-down Tree
Transducers. SIAM J. Comput. 39 (2009) 2, 410—430.

[14] J. MAY, K. KNIGHT, H. VOGLER, Efficient inference through cascades of weighted tree trans-
ducers. In: J. HAJIC, S. CARBERRY, S. CLARK, J. NIVRE (eds.), Proc. 48th Ann. Meeting ACL.
Association for Computational Linguistics, 2010, 1058—1066.

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 54-57.

Weighted Operator Precedence Languages

Manfred Droste” Stefan Diick®?) Dino Mandrioli'®)

Matteo Pradella'@”)
(B)Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany
{droste,dueck}@informatik.uni-leipzig.de

(C)Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,

Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

{dino.mandrioli,matteo.pradella}@polimi.it

(D)IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

Extended Abstract

In the long history of formal languages the family of regular languages (RL) has always played
a major role: thanks to its simplicity and naturalness, it enjoys many positive mathematical
properties which have been thoroughly exploited in disparate practical applications; among
them, those of main interest in this paper are the following:

e RL have been characterized in terms of various mathematical logics. Originally, Biichi,
Elgot, and Trakhtenbrot [3, 12, 26] independently developed a monadic second order
(MSO) logic defining exactly the RL family. This work has been followed by many further
results; in particular those that exploited weaker but simpler logics such as first-order,
propositional, and temporal ones culminated in the breakthrough of model checking to
support automatic verification [20, 13, 4].

e Weighted RL have been introduced by Schiitzenberger in [24]: by assigning a weight in
a suitable algebra to each language word, we may specify several attributes of the word,
e.g., relevance, probability, etc. Much research then followed and extended Schiitzenber-
ger’s original work in various directions, cf. the books [11, 23, 15, 2, 9].

Unfortunately, all families with greater expressive power than RL —typically context-free lan-
guages (CFL), which are the most widely used family in practical applications— pay a price
in terms of algebraic and logic properties and, consequently, of possible tools supporting their
automatic analysis. For instance, for CFL, the containment problem is undecidable.

What was not possible for general CFL, however, has been possible for important subclas-
ses of this family, which together we call structured CFL. Informally, by this term we denote
those CFL where the syntactic tree-structure of their words is immediately “visible” in the
words themselves. Two first equivalent examples of such families are parenthesis languages
[19], which are generated by grammars whose right hand sides are enclosed within pairs of

(4)This work was supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1763 (QuantLA).

Weighted Operator Precedence Languages 55

parentheses, and tree-automata [25], which generalize finite state machines (FSM) from the
recognition of linear strings to tree-like structures. Among the many variations of parenthesis
languages the recent family of input-driven languages [21, 27], alias visibly pushdown langua-
ges (VPL) [1], has received much attention in recent literature. For most of these structured
CFL, including VPL, the relevant algebraic properties of RL still hold [1]. One of the most
noticeable results has been a characterization of VPL in terms of a MSO logic that is a natural
extension of Biichi’s original one for RL [16, 1].

This fact has suggested to extend the investigation of weighted RL to various cases of struc-
tured languages. The result of such a fertile approach is a rich collection of weighted logics,
first studied by Droste and Gastin [8], associated with weighted tree automata [10] and weigh-
ted extensions of VPA (the automata recognizing VPL) [18].

In an originally unrelated way operator precedence languages (OPL) have been defined and
studied in two phases temporally separated by four decades. In his seminal work [14] Floyd was
inspired by the precedence of multiplicative operations over additive ones in the execution of
arithmetic expressions. He extended such a relation to the whole input alphabet in such a way
that it could drive a deterministic parsing algorithm that builds the syntax tree of any word that
reflects the word’s semantics.

OPL do not cover all deterministic CFL, but they enjoy a distinguishing property, not posses-
sed by general deterministic CFL, which we can intuitively describe as “OPL are input driven
but not visible”. They can be claimed as input-driven since the parsing actions on their words
—whether to push or pop— depend exclusively on the input alphabet and on the relation defined
thereon, but their structure is not visible in their words: e.g, they can include unparenthesized
expressions where the precedence of multiplicative operators over additive ones is explicit in
the syntax trees but hidden in their frontiers. Furthermore, unlike other structured CFL, OPL
include deterministic CFL that are not real-time [17].

This recent remark suggested to resume their investigation systematically at the light of the
recent technological advances and related challenges. Such a renewed investigation led to prove
their closure under all major language operations [5] and to characterize them, besides Floyd’s
original grammars, in terms of an appropriate class of pushdown automata (OPA) and in terms
of a MSO logic which is a fairly natural but not trivial extension of the previous ones defined
to characterize RL and VPL [17]. Thus, OPL enjoy the same nice properties of RL and many
structured CFL but considerably extend their applicability by breaking the barrier of visibility
and real-time push-down recognition.

In this paper we join the two research fields above, namely we introduce weighted OPL and
show that they are able to model system behaviors that cannot be specified by means of less
powerful weighted formalisms such as weighted VPL. For instance, one might be interested
in the behavior of a system which handles calls and returns but is subject to some emergency
interrupts. Then it is important to evaluate how critically the occurrences of interrupts affect the
normal system behavior, e.g., by counting the number of pending calls that have been preempted
by an interrupt. As another example we consider a system logging all hierarchical calls and
returns over words where this structural information is hidden. Depending on changing exterior
factors like energy level, such a system could decide to log the above information in a selective
way.

56

Manfred Droste, Stefan Diick, Dino Mandrioli, Matteo Pradella

Our main contributions are the following.

The model of weighted OPA, which have semiring weights at their transitions, signifi-
cantly increases the descriptive power of previous weighted extensions of VPA, and has
desired closure and robustness properties.

For arbitrary semirings, there is a relevant difference in the expressive power of the model
depending on whether it permits assigning weights to pop transitions or not. This is due to
the fact that OPL may be non-real-time and therefore OPA may execute several pop moves
without advancing their reading heads. For commutative semirings, however, weights on
pop transitions do not increase the expressive power of the automata.

An extension of the classical result of Nivat [22] to weighted OPL. This robustness result
shows that the behaviors of weighted OPA without weights at pop transitions are exactly
those that can be constructed from weighted OPA with only one state, intersected with
OPL, and applying projections which preserve the structural information.

A weighted MSO logic and, for arbitrary semirings, a Biichi-Elgot-Trakhtenbrot-Theorem
proving its expressive equivalence to weighted OPA without weights at pop transitions.
As a corollary, for commutative semirings this weighted logic is equivalent to weighted
OPA including weights at pop transitions.

Various possibilities arise for future research concerning theory and applications of our new
model. Additionally to the published results in [6], the full version of this paper [7] provides all
omitted technicalities and more explanatory comments and examples.

Literatur

[1] R. ALUR, P. MADHUSUDAN, Adding Nesting Structure to Words. J. ACM 56 (2009) 3, 16:1-16:43.

[2] J. BERSTEL, C. REUTENAUER, Rational Series and Their Languages. EATCS Monographs in

[3]

[4]

[5]

[6]

[7]

(8]

Theoretical Computer Science 12, Springer, 1988.

J. R. BUCHI, Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundlagen
Math. 6 (1960), 66-92.

C. CHOFFRUT, A. MALCHER, C. MEREGHETTI, B. PALANO, First-order logics: some characte-
rizations and closure properties. Acta Inf. 49 (2012) 4, 225-248.

S. CRESPI REGHIZZI, D. MANDRIOLI, Operator Precedence and the Visibly Pushdown Property.
J. Comput. Syst. Sci. 78 (2012) 6, 1837-1867.

M. DROSTE, S. DUCK, D. MANDRIOLI, M. PRADELLA, Weighted Operator Precedence Langua-
ges. In: K. G. LARSEN, H. L. BODLAENDER, J. RASKIN (eds.), Mathematical Foundations of
Computer Science, MFCS 2015. LIPIcs 83, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2017, 31:1-31:15.

M. DROSTE, S. DUCK, D. MANDRIOLI, M. PRADELLA, Weighted Operator Precedence Langua-
ges. CoRR abs/1702.04597 (2017).

M. DROSTE, P. GASTIN, Weighted automata and weighted logics. Theor. Comput. Sci. 380 (2007)
1-2, 69-86. Extended abstract in ICALP 2005.

Weighted Operator Precedence Languages 57

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
[20]
(21]

(22]
(23]

(24]

[25]

[26]

(27]

M. DROSTE, W. KUICH, H. VOGLER (eds.), Handbook of Weighted Automata. EATCS Monogra-
phs in Theoretical Computer Science, Springer, 2009.

M. DROSTE, H. VOGLER, Weighted tree automata and weighted logics. Theor. Comput. Sci. 366
(2006) 3, 228-247.

S. EILENBERG, Automata, Languages, and Machines. Pure and Applied Mathematics 59-A, Aca-
demic Press, 1974.

C. C. ELGoOT, Decision Problems of Finite Automata Design and Related Arithmetics. Trans. Am.
Math. Soc. 98 (1961) 1, 21-52.

E. A. EMERSON, Temporal and Modal Logic. In: Handbook of Theoretical Computer Science,
Volume B. MIT Press, 1990, 995-1072.

R. W. FLOYD, Syntactic Analysis and Operator Precedence. J. ACM 10 (1963) 3, 316-333.

W. KUICH, A. SALOMAA, Semirings, Automata, Languages. EATCS Monographs in Theoretical
Computer Science 6, Springer, 1986.

C. LAUTEMANN, T. SCHWENTICK, D. THERIEN, Logics For Context-Free Languages. In: L. PA-
CHOLSKI, J. TIURYN (eds.), Computer Science Logic, Selected Papers. LNCS 933, Springer, 1994,
205-216.

V. LONATI, D. MANDRIOLIL F. PANELLA, M. PRADELLA, Operator Precedence Languages: Their
Automata-Theoretic and Logic Characterization. SIAM J. Comput. 44 (2015) 4, 1026-1088.

C. MATHISSEN, Weighted Logics for Nested Words and Algebraic Formal Power Series. Logical
Methods in Computer Science 6 (2010) 1. Selected papers of ICALP 2008.

R. MCNAUGHTON, Parenthesis Grammars. J. ACM 14 (1967) 3, 490-500.
R. MCNAUGHTON, S. PAPERT, Counter-free Automata. MIT Press, Cambridge, USA, 1971.

K. MEHLHORN, Pebbling Mountain Ranges and its Application of DCFL-Recognition. In: Auto-
mata, Languages and Programming, ICALP 1980. LNCS 85, 1980, 422-435.

M. NIVAT, Transductions des langages de Chomsky. Ann. de I’Inst. Fourier 18 (1968), 339-455.

A. SALOMAA, M. SOITTOLA, Automata-Theoretic Aspects of Formal Power Series. Texts and
Monographs in Computer Science, Springer, 1978.

M. P. SCHUTZENBERGER, On the Definition of a Family of Automata. Inf. Control 4 (1961) 2-3,
245-270.

J. THATCHER, Characterizing derivation trees of context-free grammars through a generalization
of finite automata theory. Journ. of Comp. and Syst.Sc. 1 (1967), 317-322.

B. A. TRAKHTENBROT, Finite automata and logic of monadic predicates (in Russian). Doklady
Akademii Nauk SSR 140 (1961), 326-329.

B. VON BRAUNMUHL, R. VERBEEK, Input-driven languages are recognized in log n space. In:
Proceedings of the Symposium on Fundamentals of Computation Theory. LNCS 158, Springer,
1983, 40-51.

jﬁIEORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 58-61.

Bimonoid Weighted Linear Dynamic Logic

Gustav Grabolle™

(4)Gustav Grabolle, Universitit Leipzig, Institut fiir Informatik, PF 100920, D-04009 Leipzig

grabolle@informatik.uni-leipzig.de

Abstract

Linear dynamic logic (LDL) over finite traces was introduced by De Giacomo and Vardi
at [JCAI in 2013. LDL combines the syntax of linear temporal logic (LTL) and proposi-
tional dynamic logic (PDL), but maintains the intuitiveness of LTL. Satisfiability and valid-
ity of LDL formulas is PSPACE-complete. Furthermore, LDL characterizes the complete
family of recognizable languages. Very recently, a weighted LDL version with weights
in semirings was introduced by Droste and Rahonis. This logic can be used to describe
quantitative properties using the syntax of LDL and it has the same expressive power as
semiring weighted automata. Here, we want to introduce a weighted LDL for bimonoids
to describe quantitative properties over non-distributive structures such as lattices. This
logic is a modified version of weighted LDL for semirings and is as expressive as weighted
automata if weights are taken from bi-locally finite strong bimonoids.

1. Introduction

The connection between logics and automata is utilized in fields such as program verification
or on-the-fly model checking. One of the most prominent logics used for this purpose is linear
temporal logic (LTL), which was introduced by Pnueli [9]. LTL is intuitive and its model
checking is efficient. Nonetheless, it is less expressive than finite automata and monadic second
order logic (MSO). A proposal to close the gap in expressiveness while preserving efficient
translations from formulas to automata was given by De Giacomo and Vardi [2] via their linear
dynamic logic (LDL). De Giacomo and Vardi showed that LDL and finite automata are equally
expressive and that LDL can be translated into finite automata within doubly-exponential time.

Since their introduction weighted finite automata, a generalization of finite automata, be-
came a flourishing field of computer science. They deliver solutions to many theoretical prob-
lems and are motivated by applications in fields like language processing and image compres-
sion [1, 3]. Instead of deciding whether a computation is successful or not, they return a value
of an underlying weight structure. These values are used to model concepts like cost, probabil-
ity, capacity, or quantity. Weight structures include, but are not limited to fields and semirings
[10, 3].

Weighted logics are as important to weighted automata, as non-weighted logics are to au-
tomata. Very recently, weighted LDL with weights in semirings was introduced by Droste and
Rahonis [4]. However, the operations in semirings are distributive. To model non-distributive

Bimonoid Weighted Linear Dynamic Logic 59

structures we use non-distributive weight structures such as lattices. Lattices have been inves-
tigated for a long time and were often used as weight structures for logics like the three valued
logic L3 of Lukasiewicz.

Weighted finite automata over non-distributive weight structures have been investigated by
Droste, Stiiber, and Vogler [5], who defined weighted finite automata over strong bimonoids,
a generalization of semirings and lattices. Multi valued MSO was introduced by Droste and
Vogler [6]. Moreover, lattice valued LTL has been studied by Kupferman and Lustig [8].

In this work, we unite the concept of LDL with weighted finite automata over strong bi-
monoids, by defining multivalued LDL. Our main contributions are:

e We define weighted LDL over strong bimonoids. To this purpose, we adjust the semantics
from [4] using a non-recursive iteration operation to fit our non-distributive setting.

e In our main result we prove that weighted LDL and weighted finite automata over bi-
locally finite strong bimonoids are equally expressive. We do this by automaton con-
structions for the operations used in the semantics of weighted LDL.

e We construct an example of a quantitative language over lattices, and we use it to prove
that recognizable quantitative languages over bi-locally finite strong bimonoids are not
closed under the recursive iteration operation used in [4, 3].

Furthermore, we investigate the behavior of recognizable step functions over lattices under
rational operations.

2. Bimonoid weighted quantitative languages

A monoid is an algebraic structure (M, o,e) where o is a binary, associative operation, e € M,
and moe =m =eom forallm € M. A monoid is commutative if 4 is a commutative operation.

A bimonoid is an algebraic structure (B,+,-,0,1) (for short: B) where (M,+,0) and
(M,-, 1) are monoids, and 0 # 1. We call B a strong bimonoid if (B,+,0) is a commutative
monoid, and 0-b=5b-0=0 for all b € B. We say B is additively locally finite (multiplica-
tively locally finite), if for every finite S C B the smallest submonoid of (B,+,0) (of (B,-,1)
respectively) containing S is finite. A bimonoid B is said to be bi-locally finite if it is additively
locally finite and multiplicatively locally finite. A bimonoid B is called locally finite if for every
finite S C B the smallest subbimonoid of B containing S is finite.

Quantitative languages are the quantitative counterpart to languages (cf. [7, 3]).

Let (B,+,-,0,1) be abimonoid. A B-valued quantitative language over X is a map s : X* —
B. The set of all B-valued quantitative languages over ¥ is denoted by B{X*).

For any language L. C X*, let 1; denote the characteristic quantitative language. Let k € B
a bimonoid element, s;,s, € B{X*)) quantitative languages and n € N> an integer. We will
use the usual (cf. [6]) definitions for scalar product (k- s1 = ksy), sum (s1 + s2), Hadamard
product (s1 ® s2), and Cauchy product (s1 - s). Moreover, if s; is proper, we define the n-th
iteration (ST”), the recursive n-th iteration (5?”), the iteration (ST), and the recursive iteration

(sB) by

60 Gustav Grabolle

S w = S1.,U; S w =
(57 w) w:uxl"...unlgl;lg(nl’ i) (577 0) {s?”‘1~51 otherwise,
+ lwl +n H @l Hn
(51 ,U}) = 2531 ,’U})) (51 ,’LU) = 2551 aw)
n= n—

for all w € X*.

A quantitative language is recognizable if it is recognized by a weighted finite automaton.
For a definition of bimonoid weighted automata we refer the reader to [5]. It was shown in [6]
that recognizable quantitative languages over bi-locally finite strong bimonoids are closed under
scalar product, sum , Hadamard product, Cauchy product, n-th iteration, and iteration. However,
semiring weighted LDL uses the recursive iteration in its semantics and while iteration and
recursive iteration coincide over distributive structures, our following result showed that this is
not the case for bimonoids.

Lemma 2.1 Recognizable quantitative languages over bi-locally finite strong bimonoids are
not closed under recursive iteration.

To replace this operation we introduced the iterative combination (s * s3). If sy is proper,
it is defined by
|w|+1
(s1%s,w) = Y (Y (II (si,u))- (Sz,un)>
n=1 \w=uj..un 1<i<n—1
for all w € £*. We proved the closure of recognizable quantitative languages over bi-locally
finite strong bimonoids under the iterative combination.

3. Multivalued linear dynamic logic

For the definition of weighted LDL, we follow the definitions of [4]. However, we change the
definitions of the semantics of (p®)1). Due to Lemma 2.1, this modification was necessary.

Let (B,+,-,0,1) be a bimonoid. We define the syntax of B-weighted LDL formulas (for
short: B-LDL formulas) ¢ over X by the grammar

p=k|Y Do || (py
pi=¢ |2 pdplp-plp®
where k € B is a constant, ¢ an LDL formula (cf. [2]) over X, and ¢ a propositional formula

over X. Let ¢ be a B-LDL formula over ¥ and w € X* a word. We define the semantics
[¢] € B{X*)' of ¢ inductively on the structure of ¢ by

([¥],w) =k,

([W)]Lw) = (1L(1/))7w))
([pr@wa],w) = ([e1] + 2], w)
([er@pa],w) = ([l © 2], w) -

Now, we define the semantics of (p)¢ inductively on the structure of p by
(@)l w) = (L) w) - ([l w=1)

(e1Nelw) = ([[sol]]G[[sD]] w)

<m@pz>s0]] w) = (el + 2ol w) |

2,01 p2)el,w) = E%@OTH [(p2)],w)

(I
(I
(I
(I
([4p7) el w) (o) TT#[{p)elw) -

Bimonoid Weighted Linear Dynamic Logic 61

A quantitative language s is B-LDL definable iff a B-LDL formula ¢ exists, such that [¢] = s.
In our main result, we showed that B-LDL characterizes the class of recognizable bimonoid
weighted quantitative languages over bi-locally finite strong bimonoids.

Theorem 3.1 Let (B,+,-,0,1) be a bi-locally finite strong bimonoid and s € B{X*)) a quan-
titative language. Then, s is B-LDL definable iff s is recognizable by an B-weighted finite
automaton.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[10]

K. CHATTERJEE, L. DOYEN, T. A. HENZINGER, Quantitative languages. In: M. KAMINSKI,
S. MARTINI (eds.), Computer Science Logic. Springer, Berlin, Heidelberg, 2008, 385-400.
https://doi.org/10.1007/978-3-540-87531-4_28

G. DE GIACOMO, M. Y. VARDI, Linear Temporal Logic and Linear Dynamic Logic on Finite
Traces. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelli-
gence. AAAI Press, 2013, 854-860.
http://dl.acm.org/citation.cfm?id=2540128.2540252

M. DROSTE, W. KUICH, H. VOGLER, Handbook of Weighted Automata. 1st edition, Springer,
2009.

M. DROSTE, G. RAHONIS, Weighted linear dynamic logic. In: Proceedings of the Seventh In-
ternational Symposium on Games, Automata, Logics and Formal Verification. 226, EPTCS, 2016,
149-163.

http://dx.doi.org/10.4204/EPTCS.226.11

M. DROSTE, T. STUBER, H. VOGLER, Weighted finite automata over strong bimonoids. Inform.
Sci. 180 (2010) 1, 156 — 166. Special Issue on Collective Intelligence.
http://www.sciencedirect.com/science/article/pii/S0020025509003867

M. DROSTE, H. VOGLER, Weighted automata and multi-valued logics over arbitrary bounded
lattices. Theoret. Comput. Sci. 418 (2012), 14 — 36.
http://www.sciencedirect.com/science/article/pii/S0304397511009157

W. KUICH, Semirings and Formal Power Series: Their Relevance to Formal Languages and Au-
tomata, chapter 9. Springer, New York, NY, USA, 1997, 609-677.
http://dl.acm.org/citation.cfm?id=267846.267855

O. KUPFERMAN, Y. LUSTIG, Lattice automata. In: B. COOK, A. PODELSKI (eds.), Verification,
Model Checking, and Abstract Interpretation. Springer, Berlin, Heidelberg, 2007, 199-213.
https://doi.org/10.1007/978-3-540-69738-1_14

A. PNUELLI, The temporal logic of programs. In: /8th Annual Symposium on Foundations of Com-
puter Science (sfcs 1977). IEEE, 1977, 46-57.

M. SCHUTZENBERGER, On the definition of a family of automata. Inform. and Control 4 (1961)
2,245 -270.
http://www.sciencedirect.com/science/article/pii/S001999586180020X

’7/'5E0R1E_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 62-65.

w-Pushdown Automata
Manfred Droste Sven Dziadek®”) Werner Kuich®

(4) Universitiit Leipzig, Institut fiir Informatik, Germany

{droste,dziadek}@informatik.uni-leipzig.de

() Technische Universitit Wien, Institut fiir Diskrete Mathematik und Geometrie, Austria

werner .kuichQtuwien.ac.at

Abstract

Lautemann, Schwentick, Thérien presented an equivalent logical formalism for push-
down automata over finite words. We present here an equivalent logic for w-pushdown
automata. This automaton model has access to a stack and models context-free properties
of infinite words. To prove the equivalence in expressive power of automaton and logic,
some kind of normal form for the automaton model, the simple w-pushdown automaton, is
introduced. We prove that simple w-pushdown automata can recognize all w-context-free
languages; this result may be of independent interest. The second half of the equivalence
proof uses similar results recently developed for nested w-words.

1. Introduction

An extension of the standard model of pushdown automata is given by w-pushdown automata
which can handle infinite words and therefore model infinite processes. In 1977, Cohen,
Gold [3] developed fundamental results on w-pushdown automata and w-context-free grammars
including various recognition modes such as Biichi and Muller acceptance.

Here, we present a new type of w-pushdown automata, the simple w-pushdown automaton.
This new model does not allow e-transitions and has a very restricted access to the stack. Only
three different stack commands are available: the automaton can either pop the topmost symbol,
push one symbol or ignore the stack for that transition. We prove that simple w-pushdown
automata still recognize all w-context-free languages.

Another representation of language classes additionally to automata and grammars are log-
ics. For finite automata, this equivalence dates back to Biichi-Elgot and Trakhtenbrot [2, 4].
Logic provides an intuitive way to describe properties of a system and thus plays an important
role in verification. The translation from logics to automata allows to benefit from the algorith-
mic properties provided by these automata. This equivalence has therefore been extended to
numerous automata models. For context-free languages, Lautemann, Schwentick, Thérien [5]
presented an equivalent logic over finite words. Here, we extend their results to infinite words
to allow the study of reactive systems.

(B)Supported by DFG Research Training Group 1763 (QuantLA)

w-Pushdown Automata 63

2. Simple w-Pushdown Automata

We propose a new automaton model, the simple w-pushdown automaton; this automaton model
is the key for the equivalence proof in Section 3. We do not allow e-transitions. Additionally,
we restrict the access to the stack to only allow either to keep the stack unaltered, to push one
symbol or to pop one symbol.

Let S(T) = ({{} xT)U{#} U ({1} x) be the set of stack commands.

Definition 2.1 A simple w-pushdown automaton or wSPDA denotes a tuple M = (Q,X,T',T,
qo, F') where
e () is a finite set of states,
Y and T are finite input and stack alphabets, respectively,
T CQxXxQxS(T) is a finite set of transitions,
qo € Q is the initial state,
F C Q is a finite set of (Biichi-accepting) final states.

Note that the definition of 7" does not allow e-transitions.

Lett = (q,0,¢',(),A)); then we call t a push transitions and it pushes symbol A onto the
stack. Let t = (q,0,¢,#); then we call ¢ an internal transition and it leaves the stack unaltered.
Finally, let t = (q,0,q, (1, A)); then we call ¢ a pop transition which pops one symbol A from
the stack.

Runs of the automaton start with an empty stack and are defined to be successful if at least
one state in F' occurs infinitely often.

For an wSPDA M = (Q,X,T',T,qo, F), the language accepted by M is denoted by L(M) =
{w € £¥ | 3 successful run of M on w}. A language L C X¥ is called wSPDA-recognizable if
there exists an wSPDA M with L(M) = L.

Example 2.2 We define an example automaton A = (Q,X,{S,B},T,5,{S}) with £ = {a,b},
Q = {S, M, B} and the transitions T' as depicted in Fig. 1. In state M, the automaton reads a
and pushes B for every read a. For every B that is popped from the stack, the automaton reads
b. When there are no more B on the stack, the remaining S brings the automaton to start from
the beginning. As S is the only final state, we have L(A) = {a™b" | n > 1}¥.

a,({,5)

b7 (T? S)
b,(1,5)

(B)ou(1.B)

Figure 1: Example 2.2: Automaton

a? (\1’7 B)

Theorem 2.3 Every w-context-free language is wSPDA-recognizable.

64 Manfred Droste, Sven Dziadek, Werner Kuich

Proof. Let L be an w-context-free language. Language L is recognized by some Biichi-
accepting w-context-free grammar G = (N, X, P, S, F') in quadratic Greibach normal form. We
construct an wSPDA M = (Q,X,I",T,qo, F) withQ =T = N, gqo = S, and

T ={(4,0,B,(1,C)) | A»aBC € P}U M)
{(A,a,B,#) | A—aB € P} U (2)
{(A,a,B,(1,B)) | A=ac P,Be N} 3)

foraeXand A,B,C € N.

Intuitively, the variables in the grammar are simulated by states in the automaton. The
second variable on the right side of the productions is pushed to the stack to store it for later.
Whenever a final production is processed (Eq. (3)), it is checked which non-terminal is waiting
on the stack to be processed. O

Example 2.4 Let G = (N,X, P, S, F') be a Biichi-accepting w-context-free grammar with N =
{S,M,B},~X={a,b}, F ={S} and P contains the following rules:

S—aMS
M—b|aMB
B—b

Then G is in quadratic Greibach normal form. Note that every non-terminal M derives a string
a™"*! forn € N and thus, £(G) = {a"b" | n > 1}¥. By the construction from Theorem 2.3,
G can be transformed into the wSPDA in Fig. 1 from Example 2.2. Note that Eq. 3 generates
a rule for every non-terminal in the grammar. As there are no transitions that push M onto the
stack, we omit its pop-rule here.

3. Logic for w-Context-Free Languages

The goal of this section is to find a Biichi-type logical formalism that is expressively equivalent
to wSPDA. This extends the work of Lautemann, Schwentick, Thérien [5] who defined a logic
for context-free languages over finite words. Their proof uses context-free grammars in a sym-
metric version of the Greibach normal form. Here we use a direct translation from automata.
The logic is composed of a monadic second-order logic together with one dyadic second-order
variable that has to define a matching.

Let w € X* be an w-word. The set of all positions of w is N. A binary relation M C N x N
is matching (cf. [5]) if

e M is compatible with <, i.e., (¢,7) € M implies i < j,

e cach element ¢ belongs to at most one pair in M,

e M is non-crossing, i.e., (i,7) € M and (k,l) € M withi < k < jimply ¢ <[< j.

Let Match(N) denote the set of all matchings in N x N. The definition of matching corresponds
to the idea of Dyck languages and matchings are also important for nested words.

Let Vi, V; denote countable and pairwise disjoint sets of first-order and second-order vari-
ables. We fix a matching variable ¢ Vi UV,. Let V = VUV, U {u}. First-order variables
x € V1 will be interpreted as positions in the w-words and set variables X € V, will be sets of
positions.

w-Pushdown Automata 65

Definition 3.1 Let ¥ be an alphabet. The set WMSO(Y) of matching w-MSO formulas is defined
by the extended Backus-Naur form (EBNF)

pu=Fy(z) v <ylze X |plxy) | ~¢leVe|Tr.o|IX.¢
wherea € X, v,y € Vi and X € V}.

Here, P,(z) is a unary predicate indicating that the x-th letter of the word is a. Furthermore,
p(x,y) says that x and y will be matched. The other formulas behave in the expected way.

Definition 3.2 We let wML(Y), the set of formulas of matching w-logic over X, be the set of all
formulas 1 of the form
Y =3u. (0 AMATCHING (1)),

where p € WMSO(X). The predicate MATCHING (1) € wMSO(X) ensures that i is matching.

A language L C X¥ is wML-definable if there exists a sentence 1) € wML(Z) such that
() =L.

Theorem 3.3 Let ¥ be an alphabet and L C X¥ an w-language. Then L is wML-definable if
and only if L is wSPDA-recognizable.

Out of space restrictions, the proof is omitted here. There are two directions to prove: It
is possible to describe the behavior of any wSPDA as a logical formula. The other direction is
done by structural induction. In formulas ¢ € wMSO(X), the matching variable y occurs freely.
In the induction, it can therefore be encoded in the word; this encoding corresponds exactly to
nested w-words:

A nested w-word nw over ¥ is a pair (w,r) where w € £ is an w-word and v € Match(N)
is a matching relation over N (cf. [1]).

Corollary 3.4 Formulas ¢ € wMSO(X) are expressively equivalent to regular languages of
infinite nested words.

References

[1] R. ALUR, P. MADHUSUDAN, Visibly pushdown languages. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC 2004). 2004, 202-211.

[2] J. R. BUCHI, Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quarterly
6 (1960), 66-92.

[3] R. S. COHEN, A. Y. GOLD, Theory of w-Languages I: Characterizations of w-Context-Free Lan-
guages. Journal of Computer and System Sciences 15 (1977) 2, 169—-184.

[4] C. C. ELGOT, Decision problems of finite automata design and related arithmetics. Transactions of
the American Mathematical Society 98 (1961), 21-51.

[5S] C. LAUTEMANN, T. SCHWENTICK, D. THERIEN, Logics for Context-Free Languages. In: Interna-
tional Workshop on Computer Science Logic (CSL 1994). LNCS 933, Spinger, 1994, 205-216.

’7F}ZORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 66-69.

Properties and Decidability of Right One-Way
Jumping Finite Automata

Simon Beier Markus Holzer

Institut fiir Informatik, Universitit Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{simon.beier,holzer}@informatik.uni-giessen.de

Abstract

Right one-way jumping finite automata (ROWJFAs) are jumping automata that process
the input in a discontinuous way with the restriction that the input head reads determinis-
tically from left-to-right starting from the leftmost letter in the input and when it reaches
the end of the input word, it returns to the beginning and continues the computation. We
characterize the family of permutation closed languages accepted by ROWIJFAs in terms
of Myhill-Nerode equivalence classes. Using this, we investigate closure and non-closure
properties. Some interesting decidability questions concerning these automata are consid-
ered, too.

1. Introduction

One-way jumping finite automata were recently introduced in [2] as a variant of jumping finite
automata [5], which is a machine model for discontinuous information processing. While a
jumping automaton is allowed to nondeterministically read letters from anywhere in the input
string, not necessarily only from the left of the remaining input, a (right) one-way jumping
finite automaton (ROWJFA) moves its head from left-to-right starting from the leftmost letter
in the input, reads some symbols, while it jumps over others, and when it reaches the end of
the input word, it returns to the beginning and continues the computation, which is executed
deterministically. For both automata models a letter is erased when it is read. In a series of
papers [1, 3, 4, 7] different aspects mostly of jumping finite automata were investigated, such
as, e.g., inclusion relations, closure and non-closure results, decision problems, computational
complexity of jumping finite automata problems, etc. For ROWIJFAs inclusion relations to
well-known formal language families, closure and non-closure results under standard formal
language operations were investigated. Nevertheless, a series of problems remained open in [2].
This is the starting point of our investigation.

First, we develop a characterization of (permutation closed) languages that are accepted by
ROWIJFAs in terms of the Myhill-Nerode relation. It is shown that the permutation closed lan-
guage L belongs to ROW], the family of all languages accepted by ROWJFAs, if and only if L
can be written as the finite union of Myhill-Nerode equivalence classes. The characterization
allows us to identify languages that are not accepted by ROWIJFAs, which are useful to prove
non-closure results on standard formal language operations. In this way we solve all of the open
problems from [2] on the inclusion relations of ROWJFAs languages to other language families

Properties and Decidability of Right One-Way Jumping Finite Automata 67

and on their closure properties. It is shown that the family ROW] is an anti-abstract family of
languages.

Then, decision problems for ROWJFAs are considered. It turns out that most problems
such as, e.g., emptiness, finiteness, universality, the word problem and variants thereof, closure
under permutation, etc., are decidable. Moreover, we show that the containment of a language
within the strict hierarchy of ROWJFA permutation closed languages induced by the number
of accepting states as well as whether jumping finite automata languages can be accepted by
ROWIJFAs is decidable, too. On the other hand, we prove that for (linear) context-free languages
the corresponding ROWJFA acceptance problem becomes undecidable.

2. Preliminaries

For an alphabet X and a language L C X*, let ~, be the Myhill-Nerode equivalence relation
on X*. So, for v,w € £*, we have v ~, w if and only if, for all u € X*, the equivalence
vu € L < wu € L holds. For w € ¥*, we call the equivalence class [w]~, positive if and only
ifwe L.

A right one-way jumping finite automaton, a ROWJFA for short, is a tuple A= (Q,X, R, s, F),
where Q) is the finite set of states, ¥ is the finite input alphabet, XN (Q = (), R is a partial function
from @ x £ to), s € @ is the start state, and F' C () is the set of final states. The elements
of R are referred to as rules of A and we write py — ¢ € R instead of R(p,y) = q. A configu-
ration of A is a string in QX*. The right one-way jumping relation, symbolically denoted by O,
over QX" is defined as follows. For p € () we set

Lpp=1{b€X|pb—qec Rforsomeqe@}.

Now, let pa — ¢ € R, v € (£\ Zgy)*, and y € X*. Then, the ROWJFA A makes a jump
from the configuration pzray to the configuration gyz, symbolically written as pzray O qyx.
Let O* denote the transitive-reflexive closure of ©). The language accepted by A is L(A) =
{weX*|If e F:swO* f}. Let ROW] be the family of all languages that are accepted
by ROWIJFAs. Furthermore, for n > 0, let ROWJ, be the class of all languages accepted by
ROWIJFAs with at most n accepting states.

Let JFA be the family of all languages accepted by ordinary jumping finite automata, see [5].
Besides the above mentioned language families let REG, DCF, CF, and CS be the families of
regular, deterministic context-free, context-free, and context-sensitive languages. Moreover, we
are interested in permutation closed language families. These language families are referred to
by a prefix p. E.,g., pPROW]J denotes the language family of all permutation closed ROW]J
languages.

3. Properties of Right One-Way Jumping Finite Automata

We give a characterization for permutation closed languages that are accepted by an ROWJFA
in terms of the Myhill-Nerode relation:

Theorem 3.1 Let L be a permutation closed language and n > 0. Then, the language L is in
ROWJ,, if and only if the Myhill-Nerode relation ~, has at most n positive equivalence classes.

68 Simon Beier, Markus Holzer

The following relations were given in [2]: (1) REG C ROWJ, (2) ROW] and CF are
incomparable, and (3) ROWJ ¢ JFA. It was stated as an open problem if JFA C ROWJ. The
answer is part of the next theorem.

Theorem 3.2 We have (1) ROW]J C CS, (2) ROWJ and DCF are incomparable, (3) ROW]
and JFA are incomparable, and (4) every language in ROW] is semilinear.

The closure properties of the language families ROWJ and pROW]J are summarized in
Table 1.

Language family
Closed under REG | pPROW] ‘ ROWJ ‘ JFA
Union yes no no yes
Union with reg. lang. yes no no no
Intersection yes yes no yes
Intersection with reg. lang. yes no no no
Complementation yes no no yes
Reversal yes yes no yes
Concatenation yes no no no
Right conc. with reg. lang. yes no no no
Left conc. with reg. lang. yes no no no
Left conc. with prefix-free reg. lang. || yes no yes no
Kleene star or plus yes no no no
Homomorphism yes no no no
Inv. homomorphism yes yes no yes
Substitution yes no no no
Permutation no yes no yes

Table 1: Closure properties of ROWJ and pROW]. The gray shaded results were proven by us. The
non-shaded closure properties for REG are folklore. For ROW] the closure/non-closure results can be
found in [2] and that for the language family JFA in [1, 3, 4, 6].

4. Decidability of Right One-Way Jumping Finite Automata

The word problem, emptiness, finiteness, and universality are decidable for ROWJFAs:

Theorem 4.1 Let A be an ROWJFA with input alphabet ¥ and w € ¥*. Then, it is decid-
able (i) whether w € L(A), (ii) whether L(A) is empty, (iii) whether L(A) is finite, and (iv)
whether L(A) is universal, that is, L(A) = X*.

We can also decide if a word is extendable such that it becomes acceptable by an ROWIJFA:

Properties and Decidability of Right One-Way Jumping Finite Automata 69

Theorem 4.2 Let A be an ROWJFA with input alphabet ¥ and w € ¥*. Then, it is decidable
whether there is a v € L(A) such that (i) the word w is a prefix of v, (ii) the word w is a suffix
of v, (iii) the word w is a factor of v, and (iv) the word w is a sub-word of v.

It is decidable if an ROWIJFA accepts a permutation closed language:

Theorem 4.3 Let A be an ROWJFA. Then, it is decidable whether L(A) is closed under per-
mutation.

It was shown in [2] that JFA is the family of all permutation closed, semilinear languages.
So a language L from ROWJ is in JFA if and only if L is closed under permutation, which
is decidable by the last theorem. Containment in pROWJ, or even in the infinite hierarchy
induced by the number of accepting states, can be decided for DFAs, JFAs, and ROWJFAs:

Theorem 4.4 Let A be a DFA, a JFA, or an ROWJFA and n > 0. Then, it is decidable (i)
whether L(A) is in the family pROWJ and (ii) whether L(A) is in pPROW]y.

For one-turn pushdown automata the considered problems become undecidable. Observe,
that one-turn pushdown automata accept exactly those languages generated by linear context-
free grammars.

Theorem 4.5 Let A be a one-turn PDA. Then, it undecidable (i) whether L(A) is in the
family ROWJ and (ii) whether L(A) is in pROWJ]. For each n > 0, it is undecidable (iii)
whether L(A) is in ROWJy and (iv) whether L(A) is in pROW J,.

It is still open if the problems of regularity, disjointness, inclusion, or equivalence are de-
cidable for languages accepted by ROWJFAs.

References

[1] S. BEIER, M. HOLZER, M. KUTRIB, Operational State Complexity and Decidability of Jumping
Finite Automata. In: E. CHARLIER, J. LEROY, M. RIGO (eds.), Proceedings of the 21st Interna-
tional Conference on Developments in Language Theory. Number 10396 in LNCS, Springer, Liege,
Belgium, 2017, 96-108.

[2] H. CHIGAHARA, S. FAZEKAS, A. YAMAMURA, One-Way Jumping Finite Automata. Internat. J.
Found. Comput. Sci. 27 (2016) 3, 391-405.

[3] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, Jumping Finite Automata: Characterizations
and Complexity. In: F. DREWES (ed.), Proceedings of the 20th Conference on Implementation and
Application of Automata. Number 9223 in LNCS, Springer, Umea, Sweden, 2015, 89-101.

[4] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, V. VOREL, Characterization and Complexity
Results on Jumping Finite Automata. http://arxiv.org/abs/1512.00482, 2015.

[S] A. MEDUNA, P. ZEMEK, Jumping Finite Automata. Internat. J. Found. Comput. Sci. 23 (2012) 7,
1555-1578.

[6] A. MEDUNA, P. ZEMEK, Regulated Grammars and Automata, chapter 17: Jumping Finite Au-
tomata. Springer, 2014, 567-585.

[7]1 V. VOREL, Basic Properties of Jumping Finite Automata. http://arxiv.org/abs/1511.08396v2, 2015.

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 70-70.

Uberlegungen zur Cerny-Vermutung

Stefan Hoffmann

Ein endlicher Automat heisst synchronisierend, sofern es ein Wort gibt welches den Au-
tomaten von jedem beliebigen Zustand in einen endeutig bestimmten Zustand iiberfiihrt. Fiir
einen synchronisierenden Automaten stellt sich die Frage nach dem kiirzesten derartigen Wort,
Cerny[1] vermutete dass dies hochstens quadratisch von der Zustandszahl abhingt. Dies ist
aber nach wie vor offen, und die besten Schranken fiir allgemeine Automaten sind kubisch.
Die Beweise basieren meist auf (extremal-)kombinatorischen Uberlegungen. Neuere Arbeiten,
z.B. von Szykula[2], legen einen mehr (linear-) algebraisch orientierten Ansatz nahe. Um Ideen
letzteren Ansatz weiterzufiihren und zu verallgemeinern soll es in diesem Vortrag gehen.

References

[1] Jan Cerny. Pozndmka k. homogénnym experimentom s konecnymi automatmi. Mat. fyz.
cas SAV, 14:208-215, 1964.

[2] Marek Szykula. Improving the upper bound on the length of the shortest reset word. In
Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of
Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 56:1-56:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

’7/%0,{13 K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 71-73.

Reachability Questions on
Partially Lossy Queue Automata

Chris Kocher

Technische Universitidt [Imenau, Fachgebiet Automaten und Logik
chris.koecher@tu-ilmenau.de

Data structures are possibly the most important concept in computer science. Famous data
structures are, e.g., finite memories, counters, and Turing-tapes. But the most fundamental ones
are stacks and queues. Although both data structures have the same set of operations (reading
and writing of a letter a), there is a big difference from computability’s point of view: if we
equip finite automata with a stack (these are the well-known pushdown automata) then these
models compute exactly the context-free languages. But if we equip a finite automaton with
a queue (these are so-called queue automata) we obtain a Turing-complete computation model
[4]. This very strong model can be weakened by allowing the queue to forget any part of its
content at any time. We call these queues (fully) lossy queues.

When studying the similarities and differences between these two types of queues we found
it convenient to join them into one common model. These are the so-called partially lossy
queues (plgs for short). This type of queues allows to specify which letters in the queue can
be forgotten at any time and which ones are unforgettable. Some algebraic results on partially
lossy queues can be found in [10, 9]. In both papers we studied the behavior of partially lossy
queues by considering their transformation monoid.

Here, we discuss some reachability questions concerning automata equipped with partially
lossy queues, which we call partially lossy queue automata. To this end, for a set of transfor-
mations 7" and a language L of queue contents we define the set posty (L) of all queue contents
after execution of a transformation in 7" on a partially lossy queue with content in L. In other
words, L represents a sets of inputs into the partially lossy queue automaton, 7T’ the set of all
paths in its control component (this is an NFA labeled with atomic operations), and posty(L)
the corresponding set of outputs. Then the considered computational problem is defined as
follows:

Problem 1 Given a regular language 'I" of transformations and a regular language L of queue
contents, compute posty(L).

Partially lossy queue automata with at least one non-forgettable letter are Turing-complete.
Hence, posty (L) for these partially lossy queues can be any recursively enumerable language.
In this case the language posty (L) can be undecidable even if the language of transformations
T equals {wy,...,wy,}* for some transformations wy, ..., wy,.

For fully lossy queues, posty (L) is a regular language since it is downwards closed under
the subword ordering [7]. Though, it is not possible to compute a finite automaton accepting
posty(L) [11]. But we can construct a Turing machine accepting this language [2, 5]. This is

72 Chris Kocher

in some sense optimal since Schnoebelen and Chambart proved in [12, 6] that deciding mem-
bership of posty (L) is not primitive recursive.

In this paper we consider some restrictions on the language of transformations 7'. On the
one hand, we regard regular languages that are closed under certain commutations of the atomic
operations which guarantee the same behavior of the queue. In this case for arbitrary partially
lossy queues posty (L) is effectively regular. Thereby, an NFA accepting this language can be
computed in polynomial time. If we use an on-the-fly construction of this automaton we can
decide its membership problem using non-deterministic logarithmic space, only. Additionally,
if the language L of queue contents is context-free then posty (L) is context-free as well.

On the other hand, we consider transformation languages of the form 7™ where 7 is a finite,
so-called read-write independent set of transformations. These are sets such that for each two
words s,t € T' there is a word u € T" where u and s have the same subsequence of write actions
and v and ¢ have the same subsequence of read actions. In this case, we can compute an NFA
accepting postps (L) using polynomial space, only. This result also covers the special case w*
for some transformation w which was first studied in [3, 1] for fully reliable and fully lossy
queues, respectively. An NFA accepting post,,« (L) can be computed in polynomial time and,
again, its membership problem is in NL.

We may also consider backwards reachability in partially lossy queue automata: for a given
language 7" of transformations and a language L of queue contents, the set prey (L) is the set of
all queue contents which can reach contents in L after execution of a transformation in 7" on a
partially lossy queue. Then we regard the following computational problem:

Problem 2 Given a regular language I' of transformations and a regular language L. of queue
contents, compute prep(L).

While this problem is the same as the one above for fully reliable queues due to self-duality
(cf. [8]), there are some differences for arbitrary partially lossy queues. In this general case for
fully lossy queues it is possible to compute an NFA accepting pre(L). Though, the complexity
for computing this NFA is, again, not primitive recursive.

For transformation languages 1" that are closed under the special commutations we men-
tioned above, we can compute an NFA accepting prep(L) using polynomial space. Simi-
larly, for 7 where 7' is finite, read-write independent we can also compute an NFA accepting
prep« (L) using polynomial space. In particular, for w* with a transformation w this is possible
in polynomial time, again.

References

[1] P. A. ABDULLA, A. COLLOMB-ANNICHINI, A. BOUAJJANI, B. JONSSON, Using Forward
Reachability Analysis for Verification of Lossy Channel Systems. Formal Methods in System De-
sign 25 (2004) 1, 39-65.

[2] P. A. ABDULLA, B. JONSSON, Verifying Programs with Unreliable Channels. Information and
Computation 127 (1996) 2, 91-101.

[3] B. BOIGELOT, P. GODEFROID, B. WILLEMS, P. WOLPER, The Power of QDDs. In: Static Anal-
ysis. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1997, 172-186.

Reachability Questions on Partially Lossy Queue Automata 73

[4]

[5]

[6]

[7]

[9]

(10]

(1]

[12]

D. BRAND, P. ZAFIROPULO, On Communicating Finite-State Machines. Journal of the ACM 30
(1983) 2.

G. CECE, A. FINKEL, S. PURUSHOTAMAN IYER, Unreliable Channels Are Easier to Verify than
Perfect Channels. Information and Computation 124 (1996) 1, 20-31.

P. CHAMBART, P. SCHNOEBELEN, The Ordinal Recursive Complexity of Lossy Channel Systems.
In: LICS’08. IEEE Computer Society Press, 2008, 205-216.

L. H. HAINES, On Free Monoids Partially Ordered by Embedding. Journal of Combinatorial The-
ory 6 (1969) 1, 94-98.

M. HUSCHENBETT, D. KUSKE, G. ZETZSCHE, The Monoid of Queue Actions. Semigroup forum
95 (2017) 3, 475-508.

C. KOCHER, Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid. In:
STACS’18. LIPIcs 96, Dagstuhl Publishing, 2018, 45:1-45:14.

C. KOCHER, D. KUSKE, O. PRIANYCHNYKOVA, The Inclusion Structure of Partially Lossy
Queue Monoids and Their Trace Submonoids. RAIRO - Theoretical Informatics and Applications
52 (2018) 1, 55-86.

R. MAYR, Undecidable Problems in Unreliable Computations. Theoretical Computer Science 297
(2003) 1, 337-354.

P. SCHNOEBELEN, Verifying Lossy Channel Systems Has Nonprimitive Recursive Complexity.
Information Processing Letters 83 (2002) 5, 251-261.

’7/-11"EORIE_ K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 74-77.

Kuratowski’s Complement-Closure Theorem and
the Orbit of Closure-Involution Operations

Jiirgen Dassow

(4)Otto-von-Guericke-Universitit Magdeburg, Fakultit fiir Informatik,

Postfach 4120, 39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de

Abstract

For a closure operation ¢ and an involution ¢ defined on a language family £, we define
N, cﬁ-(L) as the number of languages which can be obtained from L by repeated applications
of ¢ and 4. The orbit O*(c,i) of ¢ and i is defined as the set of all these numbers.

We determine the orbit for some classical language theoretic closure operators and the
involution complement. We show that complement and reversal behave very different with
respect to some special closure operators. Moreover, we prove that, for an arbitrary closure
operator and reversal, some ”small” numbers cannot be avoided in the orbit.

1. Introduction

In 1922, Kuratowski proved the following closure-complement theorem (see [3]): If (X,7)
is a topological space and A C X, then at most 14 sets can be obtained from A by repeated
applications of the operations topological closure and complement. Furthermore, there is a
topological space and a set for which the bound 14 is achieved.

In 1960, Hammer noticed that such a statement holds in a more general setting; the theorem
also holds if - instead of the topological closure - a closure operator on a set X is used (see
[2]). In 1984, because the (positive) Kleene-closure is a closure operator, Peleg noticed that the
repeated application of (positive) Kleene-closure and complement to a language yields at most
14 (and at most 10, respectively) different languages and there is a language L such that the
repeated application of (positive) Kleene-closure and complement gives axactly 14 (10, respec-
tively) different languages (see [4]). In 2009, this statement was refined by Brozoswki, Grant,
and Shallit, who proved that, for any numbers n € {4,6,8,10,12,14} (m € {2,4,6,8,10}),
there are languages L,, (L;,) such that the repeated application of (positive) Kleene-closure and
complement to L,, (L,,) yields exactly n (m, respectively) different sets. Moreover, for any
number n € {4,6,8,10,12,14} (m € {2,4,6,8,10}), the authors gave necessary and sufficient
conditions such that the repeated application of (positive) Kleene-closure and complement to a
language L yields exactly n (m,respectively) different sets (see [1]).

Thus, in contrast to Kuratowski (and followers), Brozoswki, Grant, and Shallit were not
only interested the maximal number of sets which can be obtained by repeated applications of
complement and closure; they were interested in the orbit of complement and closure, which
consists of all numbers which can be obtained by such applications. In this paper we continue

Kuratowski’s Complement-Closure Theorem and the Orbit of Closure-Involution Operations/5

the determination of the orbit for some closure operators (not necessarily, Kleene-closure) and
complement or reversal.

2. Definitions

In the sequel, X is an alphabet and L x is the family of all languages over X.

An operator c is called a closure operator on Ly, if the following four conditions are satis-
fied:

— Forallsets L € Lx, c(L) € Lx.
Forall sets L € Lx, L C ¢(L).
— Forall sets L € Ly and K € Ly, the inclusion L C K implies ¢(L) C ¢(K).
For all sets L € Lx, ¢(c(L) = ¢(L), i.e., ¢ is idempotent.

We say that 7 is an involution on Ly, if i(L) € Lx and i(i(L)) = L hold for every set
Lelx.

Let ¢ be a closure operator on £ x and ¢ an involution on Lx. Then, for L. € Lx, we define
the orbit Off (L) as the set of all sets which can be obtained from L by repeated applications
of cand 7 and set

NEX(L) = card (05X (L)).

We mention that, by the fourth condition for a closure operator and the second condition for an
involution it is sufficient to consider the sequences

L,e(L),i(c(L)), c(i(e(L))),i(c(i(c(L)))), - - and Li(L), c(i(L)),i(c(i(L))), e(i(c(i(L)), - - -

in order to determine Og(i(L), i.e., it is sufficient to consider alternating applications of the two
operators.
Moreover, we define the orbit of the pair (c,7) as

OX (¢,i) = {n]NfZX(L) =nforsome L € Lx}
and Kuratowski’s number of (c,7) as
KX (¢,i) = max{n | n € OFX (c,i)}.

We mention some further closure operators on languages which are based on (special) sub-
words and superwords.

p(L) = {y | yx € L for some z € X*},

s(L) = {y | xy € L for some z € X*},

f(L) ={y | x1yxy € L for some xy,27 € X"},
)
)

uw(L) = {uwv |w € Liu,v € X*} = X LX",

1
li

(L) ={wv|weLve X"} =LX"
(L) ={uw|weLiue X"} =X"L.

Furthermore, instead of the involution complement, one can consider the involution reversal
inductively defined (over an alphabet X) by

M=) eB=zforze X, (wx)f=zwfforwe Xt zeX, L ={w?|we L}

76 Jiirgen Dassow

3. Results for some ’Classical” Closure Operators

We start with the determination the orbit using factors or prefixes or suffixes as closure operator
and complement as involution.

Theorem 3.1 For any alphabet X,

{2,4,6) = O°X(f,7) = 0¥ (p,7) = 05X (s,7)
= OFX (u,7) = OFX (ri,7) = OFX (Ii,7).

We mention that, for subwords as closure, we have characterizations of the languages with
a given cardinality of the orbit. More precisely,
~ NfX(L)=2ifand only if L = X* or L =).
- N f£ X (L) =4 if and only if one of the following three conditions hold:
— f(L)=Land f(L) # L.
— f(L)# Land f(L)= L.
- L# f(L)and L # f(L) and f(L) = f(L).
Now we give some results concerning the orbit of some known closure operators and rever-
sal. We start with a simple observation on unary alphabets.

Lemma 3.2 For any unary alphabet X and any closure operator ¢ # id on Lx, we have
Ofx (¢, R) = {1,2}.

Theorem 3.3 For any alphabet X with at least two letters, we have

i) OFX(x,R) = OFX(+,R) = OFX(f,R) = {1,2,3,4},
i) OFX(p,R) = OFX(s,R) ={1,2,3,4,5,6,7,8},
iii) OFX(u,R) = OFX(ri, R) = OFX(li,R) = {1,2,3,4}.

4. Results on Special Closure Operators and Reversal

By Kuratowski’s Theorem, we have KX (¢,7) < 14 for all closure operators ¢, and by the prop-
erties of the complement, O (¢, ™) contains only even numbers. We now show that the use of
reversal and certain closure operators lead to cases where no Kuratowski’s number exists (i. e.,
there are languages from which infinitely many languages can be obtained using repeated ap-
plications of the closure operator and reversal), to arbitrary large orbits and to orbits containing
even as well as odd numbers.

Theorem 4.1 Let X be an alphabet with at least two letters. Then there is a closure operation
c1 such that OFX (¢1, R) = {1,2,3,00}.

Theorem 4.2 Let X be an alphabet with at least two letters and n a positive integer. Then there
is a closure operation cy such that

OFX (e, R) = {1,3}U{2,4,...,2n+2}.

Kuratowski’s Complement-Closure Theorem and the Orbit of Closure-Involution Operations/7

Theorem 4.3 Let X be an alphabet with at least two letters and n a positive integer. Then there
is a closure operation c3 such that O (c3, R) = {1,2,3}U{5,7,...,2n+3}.

Looking on the previous results one can feel that any possible set of numbers can be an orbit
of some closure operator and reversal. However, this is false, because certain small numbers
cannot be avoided.

Theorem 4.4 Let c a closure operator on Lx. If KX (c, R) > 6, then we have

{2k+1]0<k<

Lx
/Cic,R) —1}c OEX(C,R)

or

2k[1<k<

Lx
’Cf’m_ucoﬁx@,m.

References

[1] J. BRZzozOWSKI, E. GRANT, J. SHALLIT, Closures in formal languages and Kuratowski’ theorem.
In: V. DIEKERT, D. NOWOTKA (eds.), Development of Languages 2009. LNCS 5583, Springer-
Verlag, Berlin, 2009, 125-144.

[2] D. HAMMER, Kuratowski’s closure theorem. Nieuw Archief v. Wiskunde 7 (1960), 74-80.
[3] C. KURATOWSKI, Sur I’opération Ade I’analysis situs. Fund. Math. 3 (1922), 182-199.

[4] D. PELEG, A generalized closure and complement phenomenon. Discrete Math. 50 (1984), 285—
293.

’7F}ZORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.—-27.9.2018
AGE 2018 Universitit Halle-Wittenberg, Technischer Bericht 18-1, S. 78-81.

Networks of Evolutionary Processors with Resources
Restricted Filters

Bianca Truthe

Institut fiir Informatik, Universitidt Giessen, Arndtstr. 2, 35392 Giessen, Germany
bianca.truthe@informatik.uni-giessen.de

Abstract

In this paper, we continue the research on networks of evolutionary processors where
the filters belong to several special families of regular languages. These subregular fami-
lies are defined by restricting the resources needed for generating or accepting them (the
number of states of the minimal deterministic finite automaton accepting a language of the
family as well as the number of non-terminal symbols or the number of production rules
of a right-linear grammar generating such a language). We insert the newly defined lan-
guage families into the hierachy of language families obtained by using as filters languages
of other subregular families (such as ordered, non-counting, power-separating, circular,
suffix-closed regular, union-free, definite, combinational, finite, monoidal, nilpotent, or
commutative languages).

1. Introduction

Networks of language processors have been introduced in [3] by E. CSUHAJ-VARJU and A. SA-
LOMAA. Such a network can be considered as a graph where the nodes represent processors
which apply production rules to the words they contain. In a derivation step (an evolutionary
step), any node derives from its language all possible words as its new language. In a com-
munication step, any node sends those words to other nodes which satisfy an output condition
given as a regular language (called the output filter) and any node adopts words sent by the other
nodes if the words satisfy an input condition also given by a regular language (called the input
filter). The language generated by a network of language processors consists of all (terminal)
words which occur in the languages associated with a given node.

Inspired by biological processes, in [1] a special type of networks of language processors
was introduced. The nodes of such networks are called evolutionary processors because the
allowed productions model the point mutation known from biology. The productions of a node
allow that one letter is substituted by another letter, letters are inserted, or letters are deleted;
the nodes are then called substitution nodes, insertion nodes, or deletion nodes, respectively.
Results on networks of evolutionary processors can be found, e. g., in [1], [2], [6]. For instance,
in [2], it was shown that networks of evolutionary processors are complete in that sense that
they can generate any recursively enumerable language.

This is a short version of a paper presented at NCMA 2018 in KoSice (Slovakia) [7].

Networks of Evolutionary Processors with Resources Restricted Filters 79

In [4] and [5], the generative capacity of networks of evolutionary processors was investi-
gated for cases that all filters belong to a certain subfamily of the set of all regular languages.

In [7], the research on networks of evolutionary processors is continued where the filters
are restricted by further bounded resources, namely the number of non-terminal symbols or
the number of production rules which are necessary for generating the languages. Addition-
ally, filters are considered which are accepted by deterministic finite automata over an arbitrary
alphabet with a bounded number of states.

2. Preliminaries

Here, we explain networks of evolutionary processors (NEPs) and present the language families
which are considered for the filters. Let V' be an alphabet. By IV* we denote the set of all words
over the alphabet V' (including the empty word \).

Intuitively, a network over an alphabet V' with n evolutionary processors is a graph con-
sisting of n nodes (also called processors) and a set of directed edges between nodes. Any
processor N; (1 <7 < n) consists of a set M; of evolutionary rules, a set A; of words, an input
filter I;, and an output filter O;. We say that N; is

— a substitution node if M; C {a — b | a,b € V'} (by any rule, a letter is substituted by
another one),

— adeletion node if M; C {a — A | a € V'} (by any rule, a letter is deleted), or
— an insertion node if M; C {A — b | b€ V} (by any rule, a letter is inserted).

Every node has rules from one type only. The input filter I; and the output filter O; control the
words which are allowed to enter and to leave the node, respectively. With any node N; and
any time moment ¢ > 0, we associate a set Cy(7) of words (the words contained in the node at
time ¢). Initially, /V; contains the words of A;. In an evolutionary step, we derive from Cy(7)
all words by applying rules from the set M;. In a communication step, any processor N; sends
out all words from the set C(7) N O; (which pass the output filter) to all processors to which
a directed edge exists (only the words from Cy(7) \ O; remain in the set associated with N;)
and, moreover, it receives from any processor N such that there is an edge from Ny to [V; all
words sent by NV, and passing the input filter I; of NV;, i.e., the processor N; gets in addition
all words of Cy(k) N Oy N I;. We start with an evolutionary step and then communication steps
and evolutionary steps are alternately performed. The language consists of all words which are
in some node N; (also called the output node, j is chosen in advance) at some moment ¢, ¢ > 0.

For a family X, we denote the family of languages generated by networks of evolutionary
processors where all filters are of type X by £(X).

In this paper, we consider filters which are defined by bounding the resources which are
necessary for accepting or generating these languages. By RLZ , RLﬁ , and REG,% , we denote
the family of all languages which are generated by a right-linear grammar with at most n non-
terminal symbols or production rules or accepted by a deterministic finite automaton with at
most n states, respectively.

In [4], the following restrictions for regular languages are considered. In order to relate our
results of this paper to the results there, we explain here those special regular languages. Let L
be a language and V' the minimal alphabet of L. We say that the language L, with respect to the

80 Bianca Truthe

alphabet V, is

— monoidal if L = V™,

— combinational if it has the form L = V* A for some subset A C V,

— definite if it can be represented in the form L = AUV * B where A and B are finite subsets
of V*,

— nilpotent if L is finite or V*\ L is finite,

— commutative if L={a;,...a;, |ay...ap € L, n>1, {i1,i2,...,0n} ={1,2,....n} },

— circular if L={vu|uwv e L, u,oeV*},

— suffix-closed if the relation zy € L for some words x,y € V* implies that also the suffix y
belongs to L or equivalently, L ={ v |uv € L, u,v € V* },

— non-counting (or star-free) if there is an integer £ > 1 such that, for any z,y, z € V*, the
relation ¥z € L holds if and only if also zy*!2 € L holds,

— power-separating if for any word x € VV* there is a natural number m > 1 such that either
the equality J!" N L = () or the inclusion J}* C L holds where J)" = {z" | n > m},

— ordered if L is accepted by some finite automaton A = (Z,V, 4, zp, F') where (Z,<) is a
totally ordered set and, for any a € V, 2 < 2/ implies §(z,a) < 6(2/,a),

— union-free if L can be described by a regular expression which is only built by product
and star.

Among the commutative, circular, suffix-closed, non-counting, and power-separating lan-
guages, we consider only those which are also regular.

By FIN, MON, COMB, DEF, NIL, COMM, CIRC, SUF, NC, PS, ORD, and UF, we denote
the families of all finite, monoidal, combinational, definite, nilpotent, regular commutative,
regular circular, regular suffix-closed, regular non-counting, regular power-separating, ordered,
and union-free languages, respectively. Furthermore, REG, CF, and RE denote the families of
all regular, all context-free, and all recursively enumerable languages, respectively.

The following theorem is known (see, e. g., [2]).

Theorem 2.1 £(REG) =RE.

3. Summary of the Results

Networks of evolutionary processors are investigated where the filters belong to subregular lan-
guage families which are defined by restricting the resources needed for generating or accepting
them (the number of states of the minimal deterministic finite automaton accepting a language
of the family, the number of non-terminal symbols, or the number of production rules of a
right-linear grammar generating such a language). These language families are inserted into
the hierachy of language families obtained by using languages of other subregular families as
filters (such as ordered, non-counting, power-separating, circular, suffix-closed regular, union-
free, definite, combinational, finite, monoidal, nilpotent, or commutative languages) which was
published in [4]. The hierarchy with the new results is shown in Figure 1.

Networks of Evolutionary Processors with Resources Restricted Filters 81

Theorem 3.1 The relations shown in Figure 1 hold.

RE = £(REG) = £(PS) = £(NC) = £(ORD)
= E(DEF) = £(CIRC) = E(UF) = £(SUF)
= E(COMB) = E(RLY)i>1 = E(REG?)i>»
/ N~
E(RLD) CF E(NIL) = £E(COMM) = E(MON) = E(REGT)
: REG
E(RLY) E(FIN)
E(RLY) NIL \COMM
FIN >\ MON

Figure 1: Hierarchy of language families by NEPs with filters from subregular families. An arrow from
a language family X to a language family Y stands for the proper inclusion X C Y. If two families X
and Y are not connected by a directed path, then the families are incomparable.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

J. CASTELLANOS, C. MARTIN-VIDE, V. MITRANA, J. M. SEMPERE, Solving NP-Complete Prob-
lems with Networks of Evolutionary Processors. In: IWANN ’01: Proceedings of the 6th Interna-
tional Work-Conference on Artificial and Natural Neural Networks. LNCS 2084, Springer-Verlag
Berlin, 2001, 621-628.

J. CASTELLANOS, C. MARTIN-VIDE, V. MITRANA, J. M. SEMPERE, Networks of Evolutionary
Processors. Acta Informatica 39 (2003) 67, 517-529.

E. CSUHAJ-VARIU, A. SALOMAA, Networks of Parallel Language Processors. In: New Trends

in Formal Languages — Control, Cooperation, and Combinatorics. LNCS 1218, Springer-Verlag
Berlin, 1997, 299-318.

J. DASsow, F. MANEA, B. TRUTHE, Networks of Evolutionary Processors: The Power of Subreg-
ular Filters. Acta Informatica 50 (2013) 1, 41-75.

J. DAssow, B. TRUTHE, On Networks of Evolutionary Processors with Filters Accepted by Two-
State-Automata. Fundamenta Informaticae 112 (2011) 2-3, 157-170.

C. MARTIN-VIDE, V. MITRANA, Networks of Evolutionary Processors: Results and Perspectives.
In: M. GHEORGHE (ed.), Molecular Computational Models: Unconventional Approaches. Idea
Group Publishing, 2005, 78-114.

B. TRUTHE, Networks of Evolutionary Processors with Resources Restricted Filters. In:
R. FREUND, M. HOSPODAR, G. JIRASKOVA, G. PIGHIZZINI (eds.), 10th Workshop on Non-
Classical Models of Automata and Applications (NCMA), KoSice, Slovakia, August 21-22, 2018,
Proceedings. books@ocg.at 332, Osterreichische Computer Gesellschaft, Austria, 2018, 165—180.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 82-86.

One-Dimensional Tiling Systems and String Rewriting

Alfons Geser'” Dieter Hofbauer” Johannes Waldmann™

(AHTWK Leipzig, Germany

(B) ASW — Berufsakademie Saarland, Germany

Abstract

We use one-dimensional tiling systems (strictly locally testable languages) to over-
approximate reachability sets in string rewriting, and apply this to prove termination auto-
matically. This refines the root labeling method by restricting to right-hand sides of forward
closures.

1. Motivation

The k-tiles of a string are its factors (contiguous sub-words) of length k. The tiled version
tiled; (R) of a rewrite system R over X describes the action of R on tiled words. Since tiledy(R)
has a larger alphabet (namely, £¥), it may be easier to analyze:

Example 1.1 For the rewriting system R = {aa — aba}, we have tiled,(R) = {[aa] — [ab,ba]}.
It is easy to see that tiled,(R) terminates, since each rule application reduces the number of
occurrences of tile aa. The original system R does not admit such a proof of termination, since
R does not remove any letters.

2. Tiling Systems

A tiling system specifies a language by considering prefixes, factors, and suffixes of bounded
length. We give an equivalent definition that allows a uniform description, using end markers
<, ¢ X. A similar method is used for two-dimensional tiling [3].

Definition 2.1 Forw € X*, the k-bordered version is bordy,(w) = <* 1w+ over LU {<1,>}.
The k-tiled version tiled),(w) is the string over £ of all factors of length k, or € in case |w| < k.
Let tilesy(w) denote alphabet(tiled).(w)), the set of letters in tiledy.(w).

Example 2.2 tiled,(bord,(abbb)) = tiled>(<1abbbr>) = [<a,ab,bb,bb, br>|, tilesy (bord, (abbb)) =
{<1a,ab,bb,br>}, tilesy (bordy(a)) = {<a,ar>}, tiles)(bord, (€)) = { <>}, and tiled;(bords(a)) =
[<<a, <al>,a>r>].

The language defined by a set of tiles 7" of length & is {w € X* | tilesy (bordy (w)) C T'}. This
is an equivalent definition of the class of strictly locally k-testable languages [6, 8], a subclass of
regular languages. We will use one-dimensional tiling systems to over-approximate reachability
sets in string rewriting.

One-Dimensional Tiling Systems and String Rewriting 83

3. Rewriting and Reachability

A string rewriting system over alphabet X consists of rewrite rules. We use standard concepts
and notation, with this extension: a constrained rule is a pair of strings [, with a constraint
¢ € {factor, suffix}, indicating where the rule is to be applied. The rewrite relations are:

—1,r factor = {(xly,:z:ry) | T,y € Z*}) —1,rsuffix = {(:I;l,xr) | T e Z*},

A constrained rule ([,7,c) is denoted by [—. r. Standard rewriting corresponds to the factor
constraint, therefore — abbreviates —f,¢ior- FOr a rewrite system R, we define — g as the union
of the rewrite relations of its rules. For a relation pon £* and aset L C X*,let p(L) ={y | Jz €
L,(x,y) € p}. Hence the set of R-reachable strings from L is =7, (L), or R*(L) for short.

A language L C X* is closed w.rt. R if —g(L) C L.

Example 3.1 For R = {cc — fct0r DC, 0@ — factor AC, € — sutfi bC, b —> syt ac} , we have bbb — s, six
bbac — factor bacc. The reachability set R*({bc,ac}) is (a+b)b*c. This set is closed w.r.t. R.

R over X is called terminating on L C ¥* if for each w € L, each R-derivation starting at w
is finite, and R is terminating if it is terminating on L*.

4. Closures
Given a rewrite system R over alphabet X, a closure C' = (I,r) of R is a pair of strings with
l —>E r such that each position of r took part in some step of the derivation. In particular,

we use forward closures [5]. Their right-hand sides can be computed by (factor and) suffix
rewriting.

Proposition 4.1 [4] RFC(R) = (RU forw(R))*(rhs(R)), where
forw(R) ={ly = suix | (il = 1) E Rl £ e# 1}
They are related to termination by
Theorem 4.2 [1] R is terminating (on L*) if and only if R is terminating on RFC(R).

Example 4.3 For R = {cc — be,ba — ac} we have forw(R) = {¢ —gufix b, b — susfix ac} and
RFC(R) = (a+0b)b*c, cf. Example 3.1. As RFC(R) contains no R-redex, R is trivially termi-
nating on RFC(R), therefore by Theorem 4.2, R is terminating.

In the following, we use tiled rewriting to approximate RFC(R). This allows to obtain the
termination proof of Example 4.3 automatically.

84 Alfons Geser, Dieter Hofbauer, Johannes Waldmann

5. Tiled Rewrite Systems

We enlarge the alphabet of a rewrite system by tiling.

Definition 5.1 For a rule | — gyci0r 7 Over ¥ we define
tiledi (I = factor) = { tiledy (21y) = factor tiledy (xry) | x € tilesy_1(<*L*),y € tiles,_1 (X' >")}
and for a given set of tiles S C tilesy,(X*)

tileds (I = factor) = tiledy, (I = factor 7) NS™ x S* x {factor}.

Both tileds and tiledy, are extended to sets of rules.

Example 5.2 tiledh(ba — foet0r ac) contains 16 rules, among them [<1b, ba,ar>] — [<a,ac, c>],
[<1b,ba, aa] — [<Qa,ac,cal,..., [ab,ba,ar>] — [aa,ac,ct>],. .., [¢b,ba,ac] — [ca,ac,cc]. For S =
{ac,ba,bb, cc} we get tileds(ba — goeror ac) = {[bb, ba, ac] — [ba,ac, cc]} and for any strict subset
T of S, tiledr(ba — gactor ac) = 0.

Derivations w.r.t. R and tiled;(R) are bi-similar, and we obtain

Theorem 5.3 For S C tiles;,(X*), if Lang(S) is closed w.r.t. R, then R is terminating on Lang(S)
if and only if tileds(R) is terminating.

Example 5.4 (cont.) R = {cc — be,ba — ac}. RFC(R) = Lang(S) for the set of tiles S =
{<a,<ab,ab,ac,bb,bc,c>}. The set RFC(R) is closed w.r.t. R by definition and tileds(R) is
empty, therefore terminating. By Theorem 5.3, R is terminating on RFC(R) and by Theo-
rem 4.2, R is terminating.

We obtain a set of tiles for using Theorem 5.3 by the following algorithm.
Algorithm 5.5 e Input: A rewrite system R over L, a set of tiles T' C tilesy,(X*).
e Output: A set of tiles S C tilesy,(X*) such that T C S and Lang(S) is closed w.r.t. R.
e Implementation: S = |J; S; for the sequence given by
So =T, Si11 = S;Ualphabet(rhs(tiled,(R) N hs~ ' (5))).

In each step, each rule is extended by contexts of length k£ — 1 on both sides such that the
extended left-hand side can be covered. Then the tiles of the extended right-hand side are added.
The algorithm terminates since (S;) is increasing w.r.t. C and bounded by tiles (X*).

6. Representing Tiling Systems by Automata

For an efficient implementation of the closure algorithm 5.5, we represent a set of tiles of length
k by a deterministic (not necessarily complete or minimal) automaton over ¥ U {<i,>>} with
states from </<* Utiles;,_; (X*)U{>*~1}, initial state ¢ and final state >*~!. For each transition
p = g, state ¢ is the suffix of length £ — 1 of p-c. Such an automaton A represents the set of
tiles

tiles(A) = {p-c|p =1 qlp|=k—1}.

One-Dimensional Tiling Systems and String Rewriting 85

Example 6.1 (Example 5.4 cont’d) This automaton represents { <la, <ib, ab, ac,bb,bc, cr>}:

(D)

Adding tiles in Algorithm 5.5 then corresponds to adding states and edges. With the au-
tomata representation, we can quickly check whether a left-hand side of a rule is covered by
the current set of tiles. Our implementation can handle automata with 10* transitions (tiles) in
a few seconds.

7. Discussion

We have presented a method to compute a regular over-approximation of reachability sets, using
tiling systems, represented as automata, and we applied this to termination analysis. The root
labeling method [7] corresponds to tiling on the full set £*, for width 2. Our method allows any
width, and restricts the set of tiles. Restriction to right-hand sides of forward closures (RFC)
had already been applied to enhance the power of the matchbound termination proof method
[2]. Our method decouples the RFC method from the matchbound method.

References

[1] NACHUM DERSHOWITZ, Termination of Linear Rewriting Systems. In: SHIMON EVEN,
ODED KARIV (eds.), Automata, Languages and Programming, 8th Colloquium, Acre
(Akko), Israel, July 13-17, 1981, Proceedings. Lecture Notes in Computer Science 115,
Springer, 1981, 448-458.

[2] ALFONS GESER, DIETER HOFBAUER, JOHANNES WALDMANN, Match-Bounded String
Rewriting Systems. Appl. Algebra Eng. Commun. Comput. 15 (2004) 3-4, 149-171.

[3] DORA GIAMMARESI, ANTONIO RESTIVO, Two-Dimensional Languages. In: ARTO SA-
LOMAA, GRZEGORZ ROZENBERG (eds.), Handbook of Formal Languages. 3, Springer,
1997, 215-267.

[4] MIKI HERMANN, Divergence des systemes de réécriture et schématisation des ensembles
infinis de termes. Habilitation, Université de Nancy, France, 1994.

[5S] DALLAS S. LANKFORD, D. R. MUSSER, A finite termination criterion. Technical report,
Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

[6] ROBERT MCNAUGHTON, SEYMOUR PAPERT, Counter-Free Automata. MIT Press, 1971.

[71 CHRISTIAN STERNAGEL, AART MIDDELDORP, Root-Labeling. In: ANDREI VORONKOV
(ed.), Rewriting Techniques and Applications, 19th International Conference, RTA 2008,

86 Alfons Geser, Dieter Hofbauer, Johannes Waldmann

Hagenberg, Austria, July 15-17, 2008, Proceedings. Lecture Notes in Computer Science
5117, Springer, 2008, 336-350.

[8] YECHEZKEL ZALCSTEIN, Locally testable languages. Journal of Computer and System
Sciences 6 (1972) 2, 151 — 167.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 87-90.

Unfair P Systems

Artiom Alhazov'® Rudolf FreundW Sergiu Ivanov(©

(4) Faculty of Informatics, TU Wien

Favoritenstraf3e 9—11, 1040 Vienna, Austria
rudi@emcc.at

(B) Institute of Mathematics and Computer Science

Academiei 5, Chisindu, MD-2028, Moldova
artiom@math.md

(€) IBISC, Université Evry, Université Paris-Saclay

23 Boulevard de France, 91025, Evry, France

sergiu.ivanov@univ-evry.fr

Abstract

We consider variants P systems in which the application of rules in each step is con-
trolled by a function on the applicable multisets of rules. Some examples are given to
exhibit the power of this general concept. Moreover, for several well-known models of P
systems we show how they can be simulated by P systems with a suitable fairness function.

1. (Hierarchical) P System with Fairness Function

A comprehensive overview of different variants of membrane systems and their expressive
power is given in the handbook, see [4]. For a state of the art view of the domain, we refer
the reader to the P systems website [6] as well as to the bulletin series of the International
Membrane Computing Society [5].

In this paper we consider a new model of P systems — first introduced in [2] and then also
published in [1] — in which the application of rules in each step is controlled by a function — the
fairness function — on the multisets of rules applicable to the underlying configuration C'.

A (generating) hierarchical P system (P system for short) is a construct

= (0,T,p,wy,...,wn, Ry,... Ry, ho),

where O is the alphabet of objects, 7" C O is the alphabet of terminal objects, y is the membrane
structure injectively labeled by the numbers from {1,...,n} and usually given by a sequence
of correctly nested brackets, w; are the multisets giving the initial contents of each membrane ¢
(1 <17 <n), R; is the finite set of rules associated with membrane 7 (1 <7 < n), and h, is the
label of the output membrane (1 < h, < n).

A (generating) hierarchical P system with fairness function (unfair P system for short) is
a construct IT" = (1, f) where IT is a P system and f is the fairness function defined for any
configuration C of I, the corresponding set Appls(I1, C') of multisets of rules from IT applicable

88 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov

to C'in the given derivation mode 0, and any multiset of rules R € Appls(IT,C'); we then use the
values f(C, Appls(I1,C), R) for all R € Appls(I1,C) to choose a multiset R’ € Appls(I1,C) of
rules to be applied to the underlying configuration C'.

We here consider the rules associated with membranes to be multiset rewriting rules, also
allowing symbols to be sent to neighboring membranes. In the maximally parallel derivation
mode, multisets rules are applied in a non-extendable way. If only one copy of each rule can
be used, we speak of the set maximally parallel mode. In the sequential mode, only one rule is
applied. A computation of a P system is traditionally considered to be a sequence of configura-
tions it successively can pass through, stopping at the halting configuration, i.e., no rule can be
applied any more, in any membrane. The result of a computation of a P system I1 is the contents
of the output membrane h,, in a halting configuration, projected over the terminal alphabet 7.

Example 1.1 Consider the P systemI1y = ({a,b},{b},[,],,a, R1,1) with the rule set Ry = {1
a — aa,2 :a — b}. Both in the sequential as well as the maximally parallel derivation mode T1
generates the whole of N.

Now consider the unfair P system I, = (I1;, f») obtained by extending I1; with the fairness
function f, defined as follows: if a rule is applied n times then it contributes to the function
value of the fairness function f, for the multiset of rules with 4™. In this unfair P system with
one membrane working in the maximally parallel way, starting with the axiom a, we use the
rule 1 : @ — aa in the maximal way k times thus obtaining 2¥ symbols a. Then in the last step,
for all a we use the rule 2 : a — b thus obtaining 2 symbols b. We cannot mix the two rules
in one of the derivation steps as only the clean use of exactly one of them yields the maximal
value for the fairness function.

We observe that the effect is similar to that of controlling the application of rules by the
well-known control mechanism called label selection, e.g., see [3], where either the rule with
label 1 or the rule with label 2 has to be chosen. We will return to this model in Section 2.2.

The following weird example shows that the fairness function should be chosen from a
suitable class of (at least recursive) functions, as otherwise the whole computing power comes
from the fairness function:

Example 1.2 Take the unfair P system I13 with one membrane working in the maximally paral-
lel way, starting with the axiom a and using the threerules 1 : a —aa,2: a—a,and3: a —b.
Moreover, let M C N, i.e., an arbitrary set of positive natural numbers. The fairness function
far on multisets of rules over these three rules and a configuration containing m symbols a
is defined as follows: For any multiset of rules R containing copies of the rules 1 : a — aa,
2:a—a,and3: a—b,

— fum(R) = 1if R only contains m copies of rule 3 and m € M,

— fu(R) = 1 if R only contains exactly one copy of rule 1 and the rest are copies of rule 2,

— fam(R) = 0 for any other applicable multiset of rules.

Again the choice is made by applying only multisets of rules which yield the maximal value
fu(R)=1. If we use rule 1 : a — aa once and rule 2 : a — a for the rest, this increases the
number of symbols a in the skin membrane by one. Thus, in m — 1 steps we get m symbols a. If
m is in M, we now may use rule 3 : a — b for all symbols a, thus obtaining m symbols b, and the
system halts. In that way, the system generates exactly {0™ | m € M }. To make this example a

Unfair P Systems 89

little bit less weird, we may only allow computable sets M. Still, the whole computing power is
in the fairness function fj; alone, with f; only depending on the multiset of rules. 0O

2. Simulation Results

In this section, we show two general results. The first one describes how priorities can be
simulated by a suitable fairness function in P systems of any kind working in the sequential
mode. The second one exhibits how P systems with rule label control, see [3], can be simulated
by suitable unfair P systems for any arbitrary derivation mode.

2.1. Simulating Priorities in the Sequential Derivation Mode

In the sequential derivation mode, exactly one rule is applied in every derivation step of the
P system I1. Given a configuration C' and the set of applicable rules Appl(IL,C') not taking
into account a given priority relation < on the rules, we define the fairness function to yield 1
for each rule in Appl(I1,C') for which no rule in Appl(I1,C') with higher priority exists, and 0
otherwise. Thus, only a rule with highest priority can be applied.

Theorem 2.1 Let (I1, <) be a P system of any kind with the priority relation < on its rules and
working in the sequential derivation mode. Then there exists an unfair P system (I1, f) with the
fairness function f simulating the computations in (I, <) selecting the multisets of rules with
maximal values.

Proof. First we observe that the main ingredient IT is exactly the same in both (I, <) and
(I1,), i.e., we only replace the priority relation < by the fairness function f, which here not
only depends on {r}, but also on Appl(I1,C)):

— f(Appl(I1,C),{r}) = 1 if and only if there exists no rule ' € Appl(I1,C') such thatr < r’,

and

— f(Appl(I1,C),{r}) = 0 if and only if there exists a rule ' € Appl(I1,C') such that r < r’.
We now define the task of f as choosing only those rules with maximal value, i.e., a rule r can
be applied to configuration C'if and only if f(Appl(I1,C),{r}) =1. O

2.2. Simulating Label Selection

In P systems with label selection only rules belonging to one of the predefined subsets of rules
can be applied to a given configuration, see [3], i.e., we label all the rules in the sets Ry,..., Ry,
in a one-to-one manner by labels from a set H and then, in any derivation step, we take a set W
containing subsets of H. A P system with label selection is a construct

HZS = <O7T7M7w17"'7wn7R17"'RN7hi7hO7H7W)7

where IT= (O, T, u,wy,...,wp, Ry,... Ry, ho) is a P system as in Section 1, H is a set of labels
for the rules in the sets Ry, ..., Ry, and W C 29 In any transition step in IT"® we first select
a set of labels U € W and then apply a non-empty multiset R of rules applicable in the given
derivation mode restricted to rules with labels in U. The following proof exhibits how the
fairness function can also be used to capture the underlying derivation mode.

90 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov

Theorem 2.2 Let (I1, H,W) be a P system with label selection using any kind of rules in any
kind of derivation mode. Then there exists an unfair P system (I, f) with fairness function f
simulating the computations in (I1, H, W) with f selecting the multisets of rules with maximal
values.

Proof. By definition, in the P system (IT, H, W) with label selection a multiset of rules
can be applied to a given configuration only if all the rules have labels in a selected set of
labels U € W. We now consider the set of all multisets of rules applicable to a configuration C,
denoted by Applysy,(I1,C), as it corresponds to the asynchronous derivation mode (abbreviated
asyn); from those we select all R which obey to the label selection criterion, i.e., there exists a
U € W such that the labels of all rules in R belong to U, and then only take those which also
fulfill the criteria of the given derivation mode restricted to rules with labels from U.

Hence we define (IT, f) by taking IT" = IT and, for any derivation mode §, f; for any multiset
of rules R € Applysyn(I1,C) as follows:

— f5(C, Applasyn(I1,C'), R) = 1 if there exists a U € W such that the labels of all rules in

R belong to U, and, moreover, R € Appls(I1y,C'), where Iy is the restricted version of
IT only containing rules with labels in U, as well as
— 15(C, Applasyn(I1,C'), R) = 0 otherwise.
According to our standard selection criterion, we choose only those multisets of rules where the
fairness function yields the maximal value 1, i.e., those R such that there exists a U € W such
that the labels of all rules in R belong to U and R is applicable according to the underlying
derivation mode with rules restricted to those having a label in U, which exactly mimicks the
way of choosing R in (IT, H,W). Therefore, in any derivation mode 4, (IT, f5) step by step
simulates the derivations in (IT, H, W) and thus yields the same computation results. O

References

[1] A. ALHAZOV, R. FREUND, S. IVANOV, P systems and the concept of fairness. In: S. COJOCARU,
C. GAINDRIC, D.I.. DRUGUS (eds.), Proceedings of the Conference on Mathematical Foundations
of Informatics MFOI2017, November 9-11, 2017, Chisindu, Republic of Moldova. 2017, 7-26.

[2] A. ALHAZOV, R. FREUND, S. IvANOV, Unfair P systems. In: C. GRACIANI, GH. PAUN,
A. RISCOS-NUNEZ, L. VALENCIA-CABRERA (eds.), Proceedings BWMC 2017. Fénix Editora,
2017, 1-12.

[3] R. FREUND, M. OSWALD, GH. PAUN, Catalytic and purely catalytic P systems and P automata: con-
trol mechanisms for obtaining computational completeness. Fundamenta Informaticae 136 (2015)
1-2, 59-84.
https://doi.org/10.3233/FI-2015-1144

[4] GH. PAUN, G. ROZENBERG, A. SALOMAA, The Oxford Handbook of Membrane Computing. Ox-
ford University Press, Inc., New York, NY, USA, 2010.

[5] Bulletin of the International Membrane Computing Society (IMCS). http://
membranecomputing.net/IMCSBulletin/index.php.

[6] The P Systems Website. http://ppage.psystems.eu/.

%ORIE- K. Reinhardt (Herausgeber): Theorietage 2018, Wittenberg, 24.-27.9.2018
AGE 2018 Universitdt Halle-Wittenberg, Technischer Bericht 18-1, S. 91-94.

Half-Terminal Grammars (HTG): A Formal Two-stage
Structured String Derivation and Interpretation System

Dominikus Heckmann®

(A)Ostbayerische Technische Hochschule Amberg-Weiden,
Kaiser-Wilhelm-Ring 22, 92224 Amberg

d.heckmann@oth-aw.de

Abstract

Early string rewriting systems, or Semi-Thue-Systems, come along with one alphabet.
Quoting [1]: The simple artifice of partitioning the alphabet in terminals and non-terminals
is a powerful one; it allows the definition of the Chomsky hierarchy based on what combi-
nation of terminals and non-terminals rules contain. This was a crucial development in the
theory of formal languages.

In this paper we look at the idea of partitioning the alphabet (of regular and context-free
grammars) into three parts instead of two, namely into terminals, non-terminals and half-
terminals. We call this concept half-terminal, see [4], since it acts in its intended usage of
a two-stage process half of the time (during the derivation stage) in a terminal functionality
and half of the time (during the reading stage) in a structure-preserving functionality:

derive read
SeVy :>Zv w] € (VHUVT)* '—>{17% wy € V'

The main intension behind this approach is to preserve the underlying structure, and to
find out how much mildly context-sensitivity can be obtained by this approach with non-
context-sensitive grammars. Half-Terminal Grammars are related to Linear Context-Free
Rewriting Systems [6], and furthermore they form a revision of Linear Structure Gram-
mars, as introduced in [4]. In this paper we present a formal definition of HTGs and some
examples of mildly context-sensitive languages.

1. Introduction

We consider the described formalism mainly as a fine tool with which we try to bring a variety of
existing grammar formalisms closer together on their structural layer and not only on the layer
of their generated formal languages. We have in mind grammars like Tree-Adjoining Gram-
mas (Joshi), Recursive Matrix Systems (Becker, Heckmann), Coupled Context-Free Grammars
(Hotz) and [5], and further mildly context-sensitive grammars with their underlying, sometimes
hidden, structures like trees, matrixes, nested lists, etc. The proposed framework seems not to
be a cooperating distributed (CD) grammar system, see [3], since only the first stage forms a
grammar while the second stage forms a (possible recursively defined) function.

(4)Ganz herzlichen Dank an die Ostbayerische Technische Hochschule fiir den gewihrten Freiraum

92 Dominikus Heckmann

Half-Terminal Grammars (HTG) form a direct, straight-forward, structure preserving exten-
sion of basic chomsky grammars. One feature is that some of the grammar functionality that
is normally executed in the production rules attached to the non-terminals can now be shifted
towards the structure interpretation part that can be attached to the terminals. We add a third
alphabet V to the two existing disjoint alphabets Vy and V7. Furthermore we add a second
stage to erase these half-terminals again.

An example for a structured string word is ([a.b.c|[a.b.c][a.b.c][e.([d.e.f][d.e.f][d.e.f]).€])
It consists of the known terminal symbols a,b,c,d, e, ... and some other symbols “(”, [, «.”,
“”,) that are neither terminals nor nonterminals. They represent structural information of

this object that could also be visualized graphically, for example as shown in figure 1:

Figure 1: one possible realization and visualization of the underlying structure, source from [2]

As we mentioned before, the half-terminal grammars consist of two generative parts: in the
derivation part structured words as elements of (VU Vy)* are generated. In the interpretation
part the structured words are transformed into pure ferminal strings as elements of (Vr)*. We
think of a restricted transformation without copying and without deleting any terminal sign. It
is more like a sorting or reading in a pre-defined order. As a convention the non-terminals are
represented by upper-case letters like S, A, B etc., the terminals are represented by lower-case
letters like a, b, ¢, and the half-terminals are represented by punctuation marks like parentheses,
dots, commas like (—[.]) or numbers.

2. Definitions

Definition 2.1 Let V be an alphabet, divided into three disjoint partitions

— VN, the set of non-terminals, also denoted as N,

— Vi, the set of half-terminals,

— Vo, the set of terminals, also denoted as T'.

A half-terminal grammar is the six-tuple construct HTG = (Vy, Vi, Vr, P, S, R), where

- G = (VN,VgUVp, P,S) is a grammar, either regular, linear or context-free, where S is
the start symbol, and P is the set of production rules, restricted according to the chosen
grammar with being context-free if P C Viy x (Vy UV UVp)*

— R is a restricted partial read-function (Vi UVy)* — (Vp)*, that guides the interpre-
tation step, which is realized as a kind of ’reading-out’ the final terminals. The concrete
realization of the definition of R is highly dependent from the underlying structure of the
concrete application.

If we further abbreviate T# = (V7 U V), we could also denote the grammar G' by the four
tuple G = (N,T’, P, S) to underline the backward compatibility. Thus we are able to denote an
Half-Terminal Grammar by a tuple HT'G = (G, R).

Half-Terminal Grammars (HTG): A Formal Two-stage Structured String Derivation and
Interpretation System 93

The following definition looks at the derivation relation

Definition 2.2 Let HTG = (G, R) be a half-terminal grammar

— The direct derivation relation induced by G, denoted :>'G is a binary relation between
sentential forms. It is defined as:

aufp = avfB iff (uw,v) € P, and auf3, avf € V*.

— The derivation relation induced by G, denoted =, is the reflexive and transitive closure
of the relation =

The following definition looks at the two different languages that can be defined, after the
two different stages of the generation process.

Definition 2.3 Let HTG be a half-terminal grammar
— The language generated by G= (Vi,Vy UVp, P, S) is called structured string language:

Lg ={wi |w € (VgUVr)*, S =(wi}
— The language generated by HT'G is called terminal string language:
Lure ={w2 | w2 € Vr", w1 € (VrUVpy)*, S =6 w1, v — g w2}

We introduce the following abbreviation: 7% := (VU Vr)* , which denotes the set of structured
string words that contains terminals as well as half-terminals.

To summarize the idea of this paper in a simplified formal notation: | ¢ _&, p# B, px

3. Examples

Example 3.1 COUNT-3

Let HT'G be defined by

- V= {SvA}’ Vr = {avbvc}’ Vu = {)v <7]7 [}’ S=2S5,
P ={S— (A), A— [abc], A— [abc]A},
R: ([a151m])[2B272]...) — ajaa...0162..7172...

— A possible derivation with interpretation:
derive (Stage 1): S = (A) = ([abc]A) = ([abc][abc] A) = ([abc][abc][abc])
read (Stage 2): ([abc|[abc][abc]) — g aaabbbeee

— (1 generates the structure of a list of triples in T*.

— R reorders the terminals in such a way that the first elements of the triples form a string,
also the second and third elements, and these three strings are catenated.

— The generated terminal language is Lyrq, = {a"b"c" |n > 1}.

94 Dominikus Heckmann

Example 3.2 COPY

Let HT'G, be defined by
- VW= {SvA}’ Vi = {a7bvc}’ Vi = {)7 <7]7 [7'}’ S=25,
P, ={5—(A), A—[a.alA, A—[bbA, A—[cc]A, A— [ee€l},
R2 . <[a1.51”a2.52]...>) — alozz...ﬁl,@z...
A possible derivation with realization-interpretation:
S = (A) = ([bb]A) = ([bb][cc]A) = ([bb][cc][cc]) — R becbee
— G- generates the structure of a list of tuples in T¥.
R, reorders the terminals in the way that the first and the second elements of the tuples
form a string each, that are con catenated. The intermediate half-terminals are deleted.
The generated terminal language is Ly7rq, = {ww | w € T*}.

4. Conclusion and Outlook

This paper presents the idea of half-terminals, it presents the idea of enriching the terminal part
within the rewriting process of formal grammars. Furthermore, HTG as a revised grammar
formalism, has been defined while leaving the read-realization-function slightly underspecified.
We expect and hope to come up with partial 2-functions that suit well the corresponding parsing
algorithms for many recursively defined 7% structures. We are happy with the compactness of
the grammar formalism: if you look at example 3.1 for a moment, you can easily image how
the grammar should be extended to implement the count-5-language for example, while other
existing mildly-context-sensitive grammar formalisms needed more complex production rules
to generate this language. However, one of the biggest advantages that we envision with half-
terminal grammars is the fact, that off-the-shelf grammars can be used at stage one. Thus all
existing definitions, research results, parsers, implementations etc. can be reused at once.
In the next step, we will look for efficient integrated structure parsing algorithms for 7%,

References

[1] Wikipedia: Semi-Thue system. https://en.wikipedia.org/wiki/Semi-Thue_system. Ac-
cessed: 2018-09-09.

[2] T. BECKER, D. HECKMANN, Recursive matrix systems (RMS) and TAG. In: Proc. of Fourth Inter-

national Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4). Philadelphia,
PA, USA, 1998, 9-12.

[3] J. DAssow, GH. PAUN, G. ROZENBERG, Grammar Systems. In: G. ROZENBERG, A. SALOMAA
(eds.), Handbook of Formal Langauges. 2, Springer-Verlag, Berlin Heidelberg, 1997, 155-213.

[4] D. HECKMANN, Recursive Matrix Systems. Diplomarbeit, Saarland University, 1999.

[5S] SEKI, MATSUMURA, FuUIll, KASAMI, On multiple context-free grammars. TCS: Theoretical Com-
puter Science 88 (1991) 1.

[6] D. WEIR, Characterizing Mildly Context-Sensitive Grammar Formalisms. Dissertation, University
of Pennsylvania, 1988.

	Practical Constant-Time Retrieval with Polynomially-small Slack
	The Minimal Extension of a Partial Solution
	Triadic Closures with Multiple Relationship Types
	Listing All Maximal k-Plexes in Temporal Graphs
	Exact Algorithms for Finding Well-Connected 2-Clubs in Sparse Real-World Graphs: Theory and Experiments
	Finding Vertex Separators on Temporal Unit Interval Graphs
	Consensus Strings with Small Maximum Distance and Small Distance Sum
	Tree Containment with Soft Polytomies
	Enumeration in Incremental FPT-Time
	The Robustness of LWPP and WPP, with an Application to Graph Reconstruction
	Activation and Blocking of Rules and Graph Control
	Komplexitätstheorie bei Formalen Sprachen
	Equations in SL(2,Z)
	Completely Reachable Automata: An Interplay Between Semigroups, Automata, and Trees
	The Satisfiability of Word Equations: Decidable and Undecidable Theories
	Iterative Arrays with Bounded Communication
	Exact and Approximated Computation of the Locality Number of Words
	On Ambiguity of Max-Plus Tree Automata
	Composition Closure of Linear Weighted Extended Top-Down Tree Transducers
	Weighted Operator Precedence Languages
	Bimonoid Weighted Linear Dynamic Logic
	 -Pushdown Automata
	Properties and Decidability of Right One-Way Jumping Finite Automata
	Überlegungen zur Cerný-Vermutung
	Reachability Questions on Partially Lossy Queue Automata
	Kuratowski's Complement-Closure Theorem and the Orbit of Closure-Involution Operations
	Networks of Evolutionary Processors with Resources Restricted Filters
	One-Dimensional Tiling Systems and String Rewriting
	Unfair P Systems
	Half-Terminal Grammars (HTG): A Formal Two-stage Structured String Derivation and Interpretation System

